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Chapter 13

Applications of BCS Theory

13.1 Quantum XY Model for Granular Superconductors

Consider a set of superconducting grains, each of which is large enough to be modeled by
BCS theory, but small enough that the self-capacitance (i.e. Coulomb interaction) cannot be
neglected. The Coulomb energy of the jth grain is written as

Ûj =
2e2

Cj

(
M̂j − M̄j

)2
, (13.1)

where M̂j is the operator which counts the number of Cooper pairs on grain j, and M̄j is the
mean number of pairs in equilibrium, which is given by half the total ionic charge on the grain.
The capacitance Cj is a geometrical quantity which is proportional to the radius of the grain,
assuming the grain is roughly spherical. For very large grains, the Coulomb interaction is
negligible. It should be stressed that here we are accounting for only the long wavelength part

of the Coulomb interaction, which is proportional to 4π
∣∣δρ̂(qmin)

∣∣2/q2min, where qmin ∼ 1/Rj is
the inverse grain size. The remaining part of the Coulomb interaction is included in the BCS
part of the Hamiltonian for each grain.

We assume that K̂
BCS , j describes a simple s-wave superconductor with gap ∆j = |∆j | eiφj . We

saw in chapter 3 how φj is conjugate to the Cooper pair number operator M̂j , with

M̂j =
1

i

∂

∂φj
. (13.2)

The operator which adds one Cooper pair to grain j is therefore eiφj , because

M̂j e
iφj = eiφj (M̂j + 1) . (13.3)

1



2 CHAPTER 13. APPLICATIONS OF BCS THEORY

Thus, accounting for the hopping of Cooper pairs between neighboring grains, the effective
Hamiltonian for a granular superconductor should be given by

Ĥgr = −1
2

∑

i,j

Jij
(
eiφi e−iφj + e−iφi eiφj

)
+
∑

i

2e2

Cj

(
M̂j − M̄j

)2
, (13.4)

where Jij is the hopping matrix element for the Cooper pairs, here assumed to be real.

Before we calculate Jij , note that we can eliminate the constants M̄i from the Hamiltonian

via the unitary transformation Ĥgr → Ĥ ′
gr = V †ĤgrV , where V =

∏
j e

i [M̄j ]φj , where [M̄j ] is

defined as the integer nearest to M̄j . The difference, δM̄j = M̄j− [M̄j ] , cannot be removed. This

transformation commutes with the hopping part of Ĥgr , so, after dropping the prime on Ĥ ′
gr ,

we are left with

Ĥgr =
∑

j

2e2

Cj

(
1

i

∂

∂φj
− δM̄j

)2
−
∑

i,j

Jij cos(φi − φj) . (13.5)

In the presence of an external magnetic field,

Ĥgr =
∑

j

2e2

Cj

(
1

i

∂

∂φj
− δM̄j

)2
−
∑

i,j

Jij cos(φi − φj −Aij) , (13.6)

where

Aij =
2e

~c

Rj∫

Ri

dl ·A (13.7)

is a lattice vector potential, with Ri the position of grain i.

13.1.1 No disorder

In a perfect lattice of identical grains, with Jij = J for nearest neighbors, δM̄j = 0 and 2e2/Cj =
U for all j, we have

Ĥgr = −U
∑

i

∂2

∂φ2
i

− 2J
∑

〈ij〉

cos(φi − φj) , (13.8)

where 〈ij〉 indicates a nearest neighbor pair. This model, known as the quantum rotor model,
features competing interactions. The potential energy, proportional to U , favors each grain
being in a state ψ(φi) = 1, corresponding to M = 0, which minimizes the Coulomb interaction.
However, it does a poor job with the hopping, since

〈
cos(φi − φj)

〉
= 0 in this state. The kinetic

(hopping) energy, proportional to J , favors that all grains be coherent with φi = α for all i,
where α is a constant. This state has significant local charge fluctuations which cost Coulomb
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energy – an infinite amount, in fact! Some sort of compromise must be reached. One important
issue is whether the ground state exhibits a finite order parameter 〈eiφi〉.

The model has been simulated numerically using a cluster Monte Carlo algorithm1, and is
known to exhibit a quantum phase transition between superfluid and insulating states at a
critical value of J/U . The superfluid state is that in which 〈eiφi〉 6= 0 .

13.1.2 Self-consistent harmonic approximation

The self-consistent harmonic approximation (SCHA) is a variational approach in which we
approximate the ground state wavefunction as a Gaussian function of the many phase variables
{φi}. Specifically, we write

Ψ[φ] = C exp
(
− 1

4
Aij φi φj

)
, (13.9)

where C is a normalization constant. The matrix elementsAij is assumed to be a function of the
separation Ri −Rj , where Ri is the position of lattice site i. We define the generating function

Z[J ] =

∫
Dφ

∣∣Ψ[φ]
∣∣2 e−Ji φi = Z[0] exp

(
1
2
JiA−1

ij Jj
)

. (13.10)

Here Ji is a source field with respect to which we differentiate in order to compute correlation
functions, as we shall see. Here Dφ =

∏
i dφi, and all the phase variables are integrated over

the φi ∈ (−∞,+∞). Right away we see something is fishy, since in the original model there is
a periodicity under φi → φi + 2π at each site. The individual basis functions are ψn(φ) = einφ,
corresponding to M = n Cooper pairs. Taking linear combinations of these basis states pre-
serves the 2π periodicity, but this is not present in our variational wavefunction. Nevertheless,
we can extract some useful physics using the SCHA.

The first order of business is to compute the correlator

〈Ψ | φi φj |Ψ 〉 = 1

Z[0]

∂2Z[J ]

∂Ji ∂Jj

∣∣∣∣∣
J=0

= A−1
ij . (13.11)

This means that
〈Ψ | ei(φi−φj) |Ψ 〉 = e−〈(φi−φj)

2〉/2 = e−(A−1
ii −A−1

ij ) . (13.12)

Here we have used that 〈eQ〉 = e〈Q
2〉/2 where Q is a sum of Gaussian-distributed variables.

Next, we need

〈Ψ | ∂
2

∂φ2
i

|Ψ 〉 = −〈Ψ | ∂

∂φi

1
2
Aik φk |Ψ 〉

= −1
2
Aii +

1
4
Aik Ali 〈Ψ | φk φl |Ψ 〉 = −1

4
Aii .

(13.13)

1See F. Alet and E. Sørensen, Phys. Rev. E 67, 015701(R) (2003) and references therein.
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Figure 13.1: Graphical solution to the SCHA equationW = r exp
(
1
2
W
)

for three representative
values of r. The critical value is rc = 2/e = 0.73576.

Thus, the variational energy per site is

1

N
〈Ψ | Ĥgr |Ψ 〉 = 1

4
UAii − zJ e−(A−1

ii −A−1
ij )

= 1
4
U

∫
ddk

(2π)d
Â(k)− zJ exp

{
−
∫

ddk

(2π)d
1− γk

Â(k)

}
,

(13.14)

where z is the lattice coordination number (Nlinks =
1
2
zN),

γk =
1

z

∑

δ

eik·δ (13.15)

is a sum over the z nearest neighbor vectors δ, and Â(k) is the Fourier transform of Aij ,

Aij =

∫
ddk

(2π)d
Â(k) ei(Ri−Rj) . (13.16)

Note that Â∗(k) = Â(−k) since Â(k) is the (discrete) Fourier transform of a real quantity.

We are now in a position to vary the energy in Eqn. 13.14 with respect to the variational pa-

rameters {Â(k)}. Taking the functional derivative with respect to Â(k) , we find

(2π)d
δ(Egr/N)

δÂ(k)
= 1

4
U − 1− γk

Â2(k)
· zJ e−W , (13.17)
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where

W =

∫
ddk

(2π)d
1− γk

Â(k)
. (13.18)

We now have

Â(k) = 2

(
zJ

U

)1/2
e−W/2

√
1− γk . (13.19)

Inserting this into our expression for W , we obtain the self-consistent equation

W = r eW/2 ; r = Cd

(
U

4zJ

)1/2
, Cd ≡

∫
ddk

(2π)d
√

1− γk . (13.20)

One finds Cd=1 = 0.900316 for the linear chain, Cd=2 = 0.958091 for the square lattice, and
Cd=3 = 0.974735 on the cubic lattice.

The graphical solution to W = r exp
(
1
2
W
)

is shown in Fig. 13.1. One sees that for r > rc =
2/e ≃ 0.73576, there is no solution. In this case, the variational wavefunction should be taken to
be Ψ = 1, which is a product of ψn=0 states on each grain, corresponding to fixed charge Mi = 0
and maximally fluctuating phase. In this case we must restrict each φi ∈ [0, 2π]. When r < rc ,
though, there are two solutions for W . The larger of the two is spurious, and the smaller one

is the physical one. As J/U increases, i.e. r decreases, the size of Â(k) increases, which means
that A−1

ij decreases in magnitude. This means that the correlation in Eqn. 13.12 is growing, and
the phase variables are localized. The SCHA predicts a spurious first order phase transition;
the real superfluid-insulator transition is continuous (second-order)2.

13.1.3 Calculation of the Cooper pair hopping amplitude

Finally, let us compute Jij . We do so by working to second order in perturbation theory in the
electron hopping Hamiltonian

Ĥhop = − 1

(Vi Vj)
1/2

∑

〈ij〉

∑

k,k′,σ

(
tij(k, k

′) c†i,k,σ cj,k′,σ + t∗ij(k, k
′) c†j,k′,σ ci,k,σ

)
. (13.21)

Here tij(k, k
′) is the amplitude for an electron of wavevector k′ in grain j to hop to a state

of wavevector k in grain i. To simplify matters we will assume the grains are identical in all
respects other than their overall phases. We’ll write the fermion destruction operators on grain
i as ckσ and those on grain j as c̃kσ . We furthermore assume tij(k, k

′) = t is real and independent
of k and k′. Only spin polarization, and not momentum, is preserved in the hopping process.
Then

Ĥhop = − t

V

∑

k,k′

(
c†kσ c̃k′σ + c̃†k′σ ckσ

)
. (13.22)

2That the SCHA gives a spurious first order transition was recognized by E. Pytte, Phys. Rev. Lett. 28, 895 (1971).
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Each grain is described by a BCS model. The respective Bogoliubov transformations are

ckσ = cosϑk γkσ − σ sinϑk e
iφ γ†−k−σ

c̃kσ = cos ϑ̃k γ̃kσ − σ sin ϑ̃k e
iφ̃ γ̃†−k−σ .

(13.23)

Second order perturbation says that the ground state energy E is

E = E0 −
∑

n

∣∣〈n | Ĥhop |G 〉
∣∣2

En − E0
, (13.24)

where |G 〉 = |Gi 〉⊗ |Gj 〉 is a product of BCS ground states on the two grains. Clearly the only

intermediate states |n 〉 which can couple to |G 〉 through a single application of Ĥhop are states
of the form

| k, k′, σ 〉 = γ†kσ γ̃
†
−k′ −σ |G 〉 , (13.25)

and for this state

〈 k, k′, σ | Ĥhop |G 〉 = −σ
(
cosϑk sin ϑ̃k′ eiφ̃ + sin ϑk cos ϑ̃k′ eiφ

)
(13.26)

The energy of this intermediate state is

Ek,k′,σ = Ek + Ek′ +
e2

C
, (13.27)

where we have included the contribution from the charging energy of each grain. Then we
find3

E (2) = E ′
0 − J cos(φ− φ̃ ) , (13.28)

where

J =
|t|2
V 2

∑

k,k′

∆k

Ek

· ∆k′

Ek′

· 1

Ek + Ek′ + (e2/C)
. (13.29)

For a general set of dissimilar grains,

Jij =
|tij|2
ViVj

∑

k,k′

∆i,k

Ei,k
·
∆j,k′

Ej,k′

· 1

Ei,k + Ej,k′ + (e2/2Cij)
, (13.30)

where C−1
ij = C−1

i + C−1
j .

3There is no factor of two arising from a spin sum since we are summing over all k and k′, and therefore summing
over spin would overcount the intermediate states |n〉 by a factor of two.
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13.2 Tunneling

We follow the very clear discussion in §9.3 of G. Mahan’s Many Particle Physics. Consider two
bulk samples, which we label left (L) and right (R). The Hamiltonian is taken to be

Ĥ = Ĥ
L
+ Ĥ

R
+ Ĥ

T
, (13.31)

where Ĥ
L,R

are the bulk Hamiltonians, and

Ĥ
T
= −

∑

i,j,σ

(
Tij c

†
L i σ cR j σ + T ∗

ij c
†
R j σ cL i σ

)
. (13.32)

The indices i and j label single particle electron states (not Bogoliubov quasiparticles) in the two
banks. As we shall discuss below, we can take them to correspond to Bloch wavevectors in a
particular energy band. In a nonequilibrium setting we work in the grand canonical ensemble,
with

K̂ = Ĥ
L
− µ

L
N̂

L
+ Ĥ

R
− µ

R
N̂

R
+ Ĥ

T
. (13.33)

The difference between the chemical potentials is µ
R
− µ

L
= eV , where V is the voltage bias.

The current flowing from left to right is

I(t) = e
〈 dN̂

L

dt

〉
. (13.34)

Note that if N
L

is increasing in time, this means an electron number current flows from right
to left, and hence an electrical current (of fictitious positive charges) flows from left to right.

We use perturbation theory in Ĥ
T

to compute I(t). Note that expectations such as 〈Ψ
L
|c

Li|ΨL
〉

vanish, while 〈Ψ
L
| c

Li cLj |ΨL
〉 may not if |Ψ

L
〉 is a BCS state.

A few words on the labels i and j: We will assume the left and right samples can be described
as perfect crystals, so i and j will represent crystal momentum eigenstates. The only exception
to this characterization will be that we assume their respective surfaces are sufficiently rough
to destroy conservation of momentum in the plane of the surface. Momentum perpendicular to
the surface is also not conserved, since the presence of the surface breaks translation invariance
in this direction. The matrix element Tij will be dominated by the behavior of the respective
single particle electron wavefunctions in the vicinity of their respective surfaces. As there is no
reason for the respective wavefunctions to be coherent, they will in general disagree in sign in
random fashion. We then expect the overlap to be proportional to A1/2 , where A is the junction
area, on the basis of the Central Limit Theorem. Adding in the plane wave normalization
factors, we therefore approximate

Tij = Tq,k ≈
(

A

V
L
V

R

)1/2
t
(
ξL q , ξRk

)
, (13.35)

where q and k are the wavevectors of the Bloch electrons on the left and right banks, respec-
tively. Note that we presume spin is preserved in the tunneling process, although wavevector
is not.
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13.2.1 Perturbation theory

We begin by noting

dN̂
L

dt
=
i

~

[
Ĥ, N̂

L

]
=
i

~

[
Ĥ

T
, N̂

L

]

= − i

~

∑

i,j,σ

(
Tij c

†
L i σ cR j σ − T ∗

ij c
†
R j σ cL i σ

)
.

(13.36)

First order perturbation theory then gives

|Ψ(t) 〉 = e−iĤ0(t−t0)/~ |Ψ(t0) 〉 −
i

~
e−iĤ0t/~

t∫

t0

dt1 ĤT
(t1) e

iĤ0t0/~ |Ψ(t0) 〉+O
(
Ĥ2

T

)
, (13.37)

where Ĥ0 = Ĥ
L
+ Ĥ

R
and

Ĥ
T
(t) = eiĤ0t/~ Ĥ

T
e−iĤ0t/~ (13.38)

is the perturbation (hopping) Hamiltonian in the interaction representation. To lowest order in

Ĥ
T
, then,

〈Ψ(t) | Î |Ψ(t) 〉 = − i

~

t∫

t0

dt1 〈 Ψ̃(t0) |
[
Î(t) , Ĥ

T
(t1)
]
| Ψ̃(t0) 〉 , (13.39)

where | Ψ̃(t0) 〉 = eiĤ0t0/~ |Ψ(t0) 〉. Setting t0 = −∞, and averaging over a thermal ensemble of
initial states, we have

I(t) = − i

~

t∫

−∞

dt′
〈[
Î(t) , Ĥ

T
(t′)
]〉

, (13.40)

where Î(t) = e
˙̂
N

L
(t) = (+e) eiĤ0t/~

˙̂
N

L
e−iĤ0t/~ is the charge current flowing from right to left.

Note that it is the electron charge −e that enters here and not the Cooper pair charge, since Ĥ
T

describes electron hopping.

There remains a caveat which we have already mentioned. The chemical potentials µ
L

and µ
R

differ according to

µ
R
− µ

L
= eV , (13.41)

where V is the bias voltage, i.e. the voltage drop from left to right. If V > 0, then µ
R
> µ

L
, which

means an electron current flows from right to left, and an electrical current (i.e. the direction of

positive charge flow) from left to right. We must work in an ensemble described by K̂0 , where

K̂0 = Ĥ
L
− µ

L
N̂

L
+ Ĥ

R
− µ

R
N̂

R
. (13.42)
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We now separate Ĥ
T

into its component processes, writing Ĥ
T
= Ĥ+

T
+ Ĥ−

T
, with

Ĥ+
T
= −

∑

i,j,σ

Tij c
†
L i σ cR j σ , Ĥ−

T
= −

∑

i,j,σ

T ∗
ij c

†
R j σ cL i σ . (13.43)

Thus, Ĥ+
T

describes hops from R to L, and Ĥ−
T

from L to R. Note that Ĥ−
T

= (Ĥ+
T
)†. Therefore

Ĥ
T
(t) = Ĥ+

T
(t) + Ĥ−

T
(t), where4

Ĥ±
T
(t) = ei(K̂0+µLN̂L

+µ
R
N̂

R
)t/~ Ĥ±

T
e−i(K̂0+µLN̂L

+µ
R
N̂

R
)t/~

= e∓ieV t/~ eiK̂0t/~ Ĥ±
T
e−iK̂0t/~ .

(13.44)

Note that the current operator is

Î =
ie

~

[
Ĥ

T
, N

L
] =

ie

~

(
Ĥ−

T
− Ĥ+

T

)
. (13.45)

We then have

I(t) =
e

~2

t∫

−∞

dt′
〈[
eieV t/~ Ĥ−

T
(t)− e−ieV t/~ Ĥ+

T
(t) , eieV t

′/~ Ĥ−
T
(t′) + e−ieV t

′/~ Ĥ+
T
(t′)
]〉

= I
N
(t) + I

J
(t) , (13.46)

where

I
N
(t) =

e

~2

∞∫

−∞

dt′ Θ(t− t′)

{
e+iΩ(t−t′)

〈[
Ĥ−

T
(t) , Ĥ+

T
(t′)
]〉

− e−iΩ(t−t′)
〈[
Ĥ+

T
(t) , Ĥ−

T
(t′)
]〉}

(13.47)

and

I
J
(t) =

e

~2

∞∫

−∞

dt′Θ(t− t′)
{
e+iΩ(t+t′)

〈[
Ĥ−

T
(t) , Ĥ−

T
(t′)
]〉

− e−iΩ(t+t′)
〈[
Ĥ+

T
(t) , Ĥ+

T
(t′)
]〉}

, (13.48)

with Ω ≡ eV/~. I
N
(t) is the usual single particle tunneling current, which is present both in

normal metals as well as in superconductors. I
J
(t) is the Josephson pair tunneling current, which

is only present when the ensemble average is over states of indefinite particle number.

13.2.2 The single particle tunneling current IN

We now proceed to evaluate the so-called single-particle current I
N

in Eqn. 13.47. This current
is present, under voltage bias, between normal metal and normal metal, between normal metal

4We make use of the fact that N̂
L
+ N̂

R
commutes with Ĥ±

T
.
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and superconductor, and between superconductor and superconductor. It is convenient to
define the quantities

X
r
(t− t′) ≡ −iΘ(t− t′)

〈[
Ĥ−

T
(t) , Ĥ+

T
(t′)
]〉

Xa(t− t′) ≡ −iΘ(t− t′)
〈[
Ĥ−

T
(t′) , Ĥ+

T
(t)
]〉

,
(13.49)

which differ by the order of the time values of the operators inside the commutator. We then
have

I
N
=
ie

~2

∞∫

−∞

dt
{
e+iΩt Xr(t) + e−iΩt Xa(t)

}

=
ie

~2

(
X̃

r
(Ω) + X̃

a
(−Ω)

)
,

(13.50)

where X̃
a
(Ω) is the Fourier transform of X

a
(t) into the frequency domain. As we shall show

presently, X̃a(−Ω) = −X̃ ∗
r (Ω), so we have

I
N
(V ) = −2e

~2
Im X̃

r
(eV/~) . (13.51)

Proof that X̃a(Ω) = −X̃ ∗
r
(−Ω)

Consider the general case

Xr(t) = −iΘ(t)
〈[
Â(t) , Â†(0)

]〉

X
a
(t) = −iΘ(t)

〈[
Â(0) , Â†(t)

]〉
.

(13.52)

We now spectrally decompose these expressions, inserting complete sets of states in between
products of operators. One finds

X̃
r
(ω) = −i

∞∫

−∞

dtΘ(t)
∑

m,n

Pm

{∣∣〈m | Â |n 〉
∣∣2ei(ωm−ωn)t −

∣∣〈m | Â† |n 〉
∣∣2e−i(ωm−ωn)t

}
eiωt

=
∑

m,n

Pm

{ ∣∣〈m | Â |n 〉
∣∣2

ω + ωm − ωn + iǫ
−

∣∣〈m | Â† |n 〉
∣∣2

ω − ωm + ωn + iǫ

}
, (13.53)

where the eigenvalues of K̂ are ~ωm , and Pm = e−~ωm/kBT
/
Ξ is the thermal probability for state

|m 〉, where Ξ is the grand partition function. The corresponding expression for X̃a(ω) is

X̃
a
(ω) =

∑

m,n

Pm

{ ∣∣〈m | Â |n 〉
∣∣2

ω − ωm + ωn + iǫ
−

∣∣〈m | Â† |n 〉
∣∣2

ω + ωm − ωn + iǫ

}
, (13.54)
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whence follows X̃a(−ω) = −X̃ ∗
r (ω). QED. Note that in general

Z(t) = −iΘ(t)
〈
Â(t) B̂(0)

〉
= −iΘ(t)

∑

m,n

Pm 〈m | eiK̂t/~ Â e−iK̂t/~ |n 〉〈n | B̂ |m 〉

= −iΘ(t)
∑

m,n

Pm 〈m | Â |n 〉〈n | B̂ |m 〉 ei(ωm−ωn)t ,

(13.55)

the Fourier transform of which is

Z̃(ω) =

∞∫

−∞

dt eiωtZ(t) =
∑

m,n

Pm
〈m | Â |n 〉〈n | B̂ |m 〉
ω + ωm − ωn + iǫ

. (13.56)

If we define the spectral density ρ(ω) as

ρ(ω) = 2π
∑

m,n

Pm〈m | Â |n 〉〈n | B̂ |m 〉 δ(ω + ωm − ωn) , (13.57)

then we have

Z̃(ω) =

∞∫

−∞

dν

2π

ρ(ν)

ω − ν + iǫ
. (13.58)

Note that ρ(ω) is real if B = A†.

Evaluation of X̃
r
(ω)

We must compute

Xr(t) = −iΘ(t)
∑

i,j,σ

∑

k,l,σ′

T ∗
kl Tij

〈[
c†
R j σ(t) cL i σ(t) , c

†
L k σ′(0) cR l σ′(0)

]〉

= −iΘ(t)
∑

q,k,σ

|Tq,k|2
{〈
c†
Rk σ(t) cRk σ(0)

〉 〈
c
L q σ(t) c

†
L q σ(0)

〉
(13.59)

−
〈
c†
L q σ(0) cLq σ(t)

〉 〈
c
Rk σ(0) c

†
Rk σ(t)

〉}

Note how we have taken j = l → k and i = k → q, since in each bank wavevector is assumed to
be a good quantum number. We now invoke the Bogoliubov transformation,

ckσ = uk γkσ − σ vk e
iφ γ†−k−σ , (13.60)
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where we write uk = cos ϑk and vk = sinϑk. We then have

〈
c†
Rk σ(t) cRk σ(0)

〉
= u2k e

iE
k
t/~ f(Ek) + v2k e

−iE
k
t/~
[
1− f(Ek)

]

〈
c
L q σ(t) c

†
L q σ(0)

〉
= u2q e

−iEqt/~
[
1− f(Eq)

]
+ v2q e

iEqt/~ f(Eq)

〈
c†
L q σ(0) cL q σ(t)

〉
= u2q e

−iEqt/~ f(Eq) + v2q e
iEqt/~

[
1− f(Eq)

]

〈
c
Rk σ(0) c

†
Rk σ(t)

〉
= u2k e

iE
k
t/~
[
1− f(Ek)

]
+ v2k e

−iE
k
t/~ f(Ek) .

(13.61)

We now appeal to Eqn. 13.35 and convert the q and k sums to integrals over ξ
L q and ξ

Rk.
Pulling out the DOS factors g

L
≡ g

L
(µ

L
) and g

R
≡ g

R
(µ

R
), as well as the hopping integral

t ≡ t
(
ξ
L q = 0 , ξ

Rk = 0
)

from the integrand, we have

Xr(t) = −iΘ(t)× 1
2
g
L
g
R
|t|2A

∞∫

−∞

dξ

∞∫

−∞

dξ′ × (13.62)

{[
u2 e−iEt/~ (1− f) + v2 eiEt/~ f

]
×
[
u′

2
eiE

′t/~ f ′ + v′
2
e−iE

′t/~ (1− f ′)
]

−
[
u2 e−iEt/~ f + v2 eiEt/~ (1− f)

]
×
[
u′

2
eiE

′t/~ (1− f ′) + v′
2
e−iE

′t/~ f ′
]}

,

where unprimed quantities correspond to the left bank (L) and primed quantities to the right
bank (R). The ξ and ξ′ integrals are simplified by the fact that in u2 = (E + ξ)/2E and v2 =
(E − ξ)/2E, etc. The terms proportional to ξ and ξ′ and to ξξ′ drop out because everything else
in the integrand is even in ξ and ξ′ separately. Thus, we may replace u2, v2, u′2, and v′2 all by
1
2
. We now compute the Fourier transform, and we can read off the results keeping in mind the

integral,
∞∫

0

dt eiωt eiΩt e−ǫt =
i

ω +Ω + iǫ
. (13.63)

We then obtain

X̃
r
(ω) = 1

8
~ g

L
g
R
|t|2A

∞∫

−∞

dξ

∞∫

−∞

dξ′

{
2 (f ′ − f)

~ω + E ′ −E + iǫ
+

1− f − f ′

~ω − E − E ′ + iǫ
(13.64)

− 1− f − f ′

~ω + E + E ′ + iǫ

}
.
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Therefore,

I
N
(V, T ) = −2e

~2
Im X̃r(eV/~) (13.65)

=
πe

~
g
L
g
R
|t|2A

∞∫

0

dξ

∞∫

0

dξ′
{
(1− f − f ′)

[
δ(E + E ′ − eV )− δ(E + E ′ + eV )

]

+ 2 (f ′ − f) δ(E ′ − E + eV )

}
.

Single particle tunneling current in NIN junctions

We now evaluate I
N

from Eqn. 13.65 for the case where both banks are normal metals. In this
case, E = ξ and E ′ = ξ′. (No absolute value symbol is needed since the ξ and ξ′ integrals run
over the positive real numbers.) At zero temperature, we have f = 0 and thus

I
N
(V, T = 0) =

πe

~
g
L
g
R
|t|2A

∞∫

0

dξ

∞∫

0

dξ′
[
δ(ξ + ξ′ − eV )− δ(ξ + ξ′ + eV )

]

=
πe

~
g
L
g
R
|t|2A

eV∫

0

dξ =
πe2

~
g
L
g
R
|t|2AV .

(13.66)

We thus identify the normal state conductance of the junction as

G
N
≡ πe2

~
g
L
g
R
|t|2A . (13.67)

Single particle tunneling current in NIS junctions

Consider the case where one of the banks is a superconductor and the other a normal metal.
We will assume V > 0 and work at T = 0. From Eqn. 13.65, we then have

I
N
(V, T = 0) =

G
N

e

∞∫

0

dξ

∞∫

0

dξ′ δ(ξ + E ′ − eV ) =
G

N

e

∞∫

0

dξΘ(eV −E)

=
G

N

e

eV∫

∆

dE
E√

E2 −∆2
= Gn

√
V 2 − (∆/e)2 .

(13.68)

The zero temperature conductance of the NIS junction is therefore

G
NIS

(V ) =
dI

dV
=

G
N
eV√

(eV )2 −∆2
. (13.69)
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Figure 13.2: NIS tunneling for positive bias (left), zero bias (center), and negative bias (right).
The left bank is maintained at an electrical potential V with respect to the right, hence µR =
µL + eV . Blue regions indicate occupied fermionic states in the metal. Green regions indicate
occupied electronic states in the superconductor. Light red regions indicate unoccupied states.
Tunneling from or into the metal can only take place when its Fermi level lies outside the
superconductor’s gap region, meaning |eV | > ∆, where V is the bias voltage. The arrow
indicates the direction of electron number current. Black arrows indicate direction of electron
current. Thick red arrows indicate direction of electrical current.

Hence the ratio G
NIS
/G

NIN
is

G
NIS

(V )

G
NIN

(V )
=

eV√
(eV )2 −∆2

. (13.70)

It is to be understood that these expressions are to be multiplied by sgn(V ) Θ
(
e|V |−∆

)
to obtain

the full result valid at all voltages.

Superconducting density of states

We define

n
S
(E) = 2

∫
d3k

(2π)3
δ(E − Ek) ≃ g(µ)

∞∫

−∞

dξ δ
(
E −

√
ξ2 +∆2

)

= g(µ)
2E√

E2 −∆2
Θ(E −∆) .

(13.71)

This is the density of energy states per unit volume for elementary excitations in the supercon-
ducting state. Note that there is an energy gap of size ∆, and that the missing states from this
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Figure 13.3: Tunneling data by Giaever et al. from Phys. Rev. 126, 941 (1962). Left: normalized
NIS tunneling conductance in a Pb/MgO/Mg sandwich junction. Pb is a superconductor for
T < TPb

c = 7.19K, and Mg is a metal. A thin MgO layer provides a tunnel barrier. Right: I-V
characteristic for a SIS junction Sn/SnOx/Sn. Sn is a superconductor for T < T Sn

c = 2.32K.

region pile up for E >∼∆, resulting in a (integrable) divergence of n
S
(E). In the limit ∆ → 0, we

have n
S
(E) = 2 g(µ) Θ(E). The factor of two arises because n

S
(E) is the total density of states,

which includes particle excitations above kF as well as hole excitations below kF, both of which
contribute g(µ). If ∆(ξ) is energy-dependent in the vicinity of ξ = 0, then we have

n(E) = g(µ) · E
ξ
·
(
1 +

∆

ξ

d∆

dξ

)−1
∣∣∣∣∣
ξ=
√
E2−∆2(ξ)

. (13.72)

Here, ξ =
√
E2 −∆2(ξ) is an implicit relation for ξ(E).

The function n
S
(E) vanishes for E < 0. We can, however, make a particle-hole transformation

on the Bogoliubov operators, so that

γkσ = ψkσ Θ(ξk) + ψ†
−k−σΘ(−ξk) . (13.73)

We then have, up to constants,

K̂
BCS

=
∑

kσ

Ekσ ψ†
kσ ψkσ , (13.74)
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where

Ekσ =

{
+Ekσ if ξk > 0

−Ekσ if ξk < 0 .
(13.75)

The density of states for the ψ particles is then

ñ
S
(E) = g

S
|E|√

E2 −∆2
Θ
(
|E| −∆

)
, (13.76)

were g
S

is the metallic DOS at the Fermi level in the superconducting bank, i.e. above Tc. Note
that ñ

S
(−E) = ñ

S
(E) is now an even function of E , and that half of the weight from n

S
(E) has

now been assigned to negative E states. The interpretation of Fig. 13.2 follows by writing

I
N
(V, T = 0) =

G
N

eg
S

eV∫

0

dE n
S
(E) . (13.77)

Note that this is properly odd under V → −V . If V > 0, the tunneling current is proportional
to the integral of the superconducting density of states from E = ∆ to E = eV . Since ñ

S
(E)

vanishes for |E| < ∆, the tunnel current vanishes if |eV | < ∆.

Single particle tunneling current in SIS junctions

We now come to the SIS case, where both banks are superconducting. From Eqn. 13.65, we
have (T = 0)

I
N
(V, T = 0) =

G
N

e

∞∫

0

dξ

∞∫

0

dξ′ δ(E + E ′ − eV ) (13.78)

=
G

N

e

∞∫

0

dE

∞∫

0

dE ′ E√
E2 −∆2

L

E ′

√
E ′ 2 −∆2

R

{
δ(E + E ′ − eV )− δ(E + E ′ + eV )

}
.

While this integral has no general analytic form, we see that I
N
(V ) = −I

N
(−V ), and that the

threshold voltage V ∗ below which I
N
(V ) vanishes is given by eV ∗ = ∆

L
+ ∆

R
. For the special

case ∆
L
= ∆

R
≡ ∆, one has

I
N
(V ) =

G
N

e

{
(eV )2

eV + 2∆
K(x)− (eV + 2∆)

(
K(x)− E(x)

)}
, (13.79)

where x = (eV − 2∆)/(eV + 2∆) and K(x) and E(x) are complete elliptic integrals of the first
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Figure 13.4: SIS tunneling for positive bias (left), zero bias (center), and negative bias (right).
Green regions indicate occupied electronic states in each superconductor, where ñS(E) > 0.

and second kinds, respectively:

K(x) =

π/2∫

0

dθ√
1− x2 sin2θ

E(x) =

π/2∫

0

dθ
√

1− x2 sin2θ .

(13.80)

We may also make progress by setting eV = ∆
L
+∆

R
+ e δV . One then has

I
N
(V ∗ + δV ) =

G
N

e

∞∫

0

dξ
L

∞∫

0

dξ
R
δ

(
e δV − ξ2

L

2∆
L

− ξ2
R

2∆
R

)
=
πG

N

2e

√
∆

L
∆

R
. (13.81)

Thus, the SIS tunnel current jumps discontinuously at V = V ∗. At finite temperature, there is a
smaller local maximum in I

N
for V = |∆

L
−∆

R
|
/
e.
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13.2.3 The Josephson pair tunneling current IJ

Earlier we obtained the expression

I
J
(t) =

e

~2

∞∫

−∞

dt′ Θ(t− t′)

{
e+iΩ(t+t′)

〈[
Ĥ−

T
(t) , Ĥ−

T
(t′)
]〉

(13.82)

− e−iΩ(t+t′)
〈[
Ĥ+

T
(t) , Ĥ+

T
(t′)
]〉}

.

Proceeding in analogy to the case for I
N
, define now the anomalous response functions,

Y
r
(t− t′) = −iΘ(t− t′)

〈[
Ĥ+

T
(t) , Ĥ+

T
(t′)
]〉

Ya(t− t′) = −iΘ(t− t′)
〈[
Ĥ−

T
(t′) , Ĥ−

T
(t)
]〉

.
(13.83)

The spectral representations of these response functions are

Ỹ
r
(ω) =

∑

m,n

Pm

{
〈m | Ĥ+

T
|n 〉〈n | Ĥ+

T
|m 〉

ω + ωm − ωn + iǫ
− 〈m | Ĥ+

T
|n 〉〈n | Ĥ+

T
|m 〉

ω − ωm + ωn + iǫ

}

Ỹ
a
(ω) =

∑

m,n

Pm

{
〈m | Ĥ−

T
|n 〉〈n | Ĥ−

T
|m 〉

ω − ωm + ωn + iǫ
− 〈m | Ĥ−

T
|n 〉〈n | Ĥ−

T
|m 〉

ω + ωm − ωn + iǫ

}
,

(13.84)

from which we see Ỹa(ω) = −Ỹ∗
r (−ω). The Josephson current is then given by

I
J
(t) = − ie

~2

∞∫

−∞

dt′
{
e−2iΩt Y

r
(t− t′) e+iΩ(t−t′) + e+2iΩt Y

a
(t− t′) e−iΩ(t−t′)

}

=
2e

~2
Im
[
e−2iΩt Ỹr(Ω)

]
,

(13.85)

where Ω = eV/~.

Plugging in our expressions for Ĥ±
T

, we have

Y
r
(t) = −iΘ(t)

∑

k,q,σ

Tk,q T−k,−q

〈[
c†
L q σ(t) cRk σ(t) , c

†
L−q−σ(0) cR−k−σ(0)

]〉

= 2iΘ(t)
∑

q,k

Tk,q T−k,−q

{〈
c†
L q ↑(t) c

†
L−q ↓(0)

〉 〈
c
Rk ↑(t) cR−k ↓(0)

〉
(13.86)

−
〈
c†
L−q ↓(0) c

†
L q ↑(t)

〉 〈
c
R−k ↓(0) cRk ↑(t)

〉}
.
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Again we invoke Bogoliubov,

ck↑ = uk γk↑ − vk e
iφ γ†−k ↓ c†k↑ = uk γ

†
k↑ − vk e

−iφ γ−k ↓ (13.87)

c−k ↓ = uk γ−k ↓ + vk e
iφ γ†k ↑ c†−k ↓ = uk γ

†
−k ↓ + vk e

−iφ γk ↑ (13.88)

to obtain
〈
c†
L q ↑(t) c

†
L−q ↓(0)

〉
= uq vq e

−iφ
L

{
eiEqt/~ f(Eq)− e−iEqt/~

[
1− f(Eq)

]}

〈
c
Rk ↑(t) cR−k ↓(0)

〉
= uk vk e

+iφ
R

{
e−iEk

t/~
[
1− f(Ek)

]
− eiEk

t/~ f(Ek)
}

〈
c†
L−q ↓(0) c

†
L q ↑(t)

〉
= uq vq e

−iφL

{
eiEqt/~

[
1− f(Eq)

]
− e−iEqt/~ f(Eq)

}

〈
c
R−k ↓(0) cRk ↑(t)

〉
= uk vk e

+iφ
R

{
e−iEk

t/~ f(Ek)− eiEk
t/~
[
1− f(Ek)

]}

(13.89)

We then have

Y
r
(t) = iΘ(t)× 1

2
g
L
g
R
|t|2Aei(φR−φ

L
)

∞∫

−∞

dξ

∞∫

−∞

dξ′ u v u′ v′× (13.90)

{[
eiEt/~ f − e−iEt/~ (1− f)

]
×
[
e−iE

′t/~ (1− f ′)− eiE
′t/~ f ′

]

−
[
eiEt/~ (1− f)− e−iEt/~ f

]
×
[
e−iE

′t/~ f ′ − eiE
′t/~ (1− f ′)

]}
,

where once again primed and unprimed symbols refer respectively to left (L) and right (R)
banks. Recall that the BCS coherence factors give uv = 1

2
sin(2ϑ) = ∆/2E. Taking the Fourier

transform, we have

Ỹ
r
(ω) = 1

2
~ g

L
g
R
|t|2 ei(φR−φL)A

∞∫

0

dξ

∞∫

0

dξ′
∆

E

∆′

E ′

{
f − f ′

~ω + E − E ′ + iǫ
− f − f ′

~ω − E + E ′ + iǫ

+
1− f − f ′

~ω + E + E ′ + iǫ
− 1− f − f ′

~ω − E − E ′ + iǫ

}
. (13.91)

Setting T = 0, we have

Ỹ
r
(ω) =

~
2G

N

2πe2
ei(φR−φL)

∞∫

0

dξ

∞∫

0

dξ′
∆∆′

EE ′

{
1

~ω + E + E ′ + iǫ
− 1

~ω − E −E ′ + iǫ

}

=
~
2G

N

2πe2
ei(φR−φL)

∞∫

∆

dE
∆√

E2 −∆2

∞∫

∆′

dE ′ ∆′

√
E ′ 2 −∆′ 2

× 2 (E + E ′)

(~ω)2 − (E + E ′)2
.

(13.92)
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Figure 13.5: Current-voltage characteristics for a current-biased Josephson junction. Increasing
current at zero bias voltage is possible up to |I| = Ic, beyond which the voltage jumps along
the dotted line. Subsequent reduction in current leads to hysteresis.

There is no general analytic form for this integral. However, for the special case ∆ = ∆′, we
have

Ỹ
r
(ω) =

G
N
~
2

2e2
∆K

(
~|ω|
4∆

)
ei(φR−φL) , (13.93)

where K(x) is the complete elliptic integral of the first kind. Thus,

I
J
(t) = G

N
· ∆
e
K

(
e|V |
4∆

)
sin

(
φ

R
− φ

L
− 2eV t

~

)
. (13.94)

With V = 0, one finds (at finite T ),

I
J
= G

N
· π∆
2e

tanh

(
∆

2k
B
T

)
sin(φ

R
− φ

L
) . (13.95)

Thus, there is a spontaneous current flow in the absence of any voltage bias, provided the
phases remain fixed. The maximum current which flows under these conditions is called the
critical current of the junction, Ic . Writing R

N
= 1/G

N
for the normal state junction resistance,

one has

IcRN
=
π∆

2e
tanh

(
∆

2k
B
T

)
, (13.96)
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which is known as the Ambegaokar-Baratoff relation. Note that Ic agrees with what we found in
Eqn. 13.81 for V just above V ∗ = 2∆. Ic is also the current flowing in a normal junction at bias
voltage V = π∆/2e. Setting Ic = 2eJ/~ where J is the Josephson coupling, we find our V = 0
results here in complete agreement with those of Eqn. 13.29 when Coulomb charging energies
of the grains are neglected.

Experimentally, one generally draws a current I across the junction and then measures the
voltage difference. In other words, the junction is current-biased. Varying I then leads to a
hysteretic voltage response, as shown in Fig. 13.5. The functional form of the oscillating current
is then I(t) = Ic sin(φR

−φ
L
−Ωt), which gives no DC average. WithR

N
≈ 1.5Ω and ∆ = 1meV,

one obtains a critical current Ic = 1mA. For a junction of area A ∼ 1mm2, the critical current
density is then jc = Ic/A ∼ 103A/m2. Current densities in bulk type I and type II materials can
approach j ∼ 1011A/m2 and 109A/m2, respectively.

13.3 The Josephson Effect

13.3.1 Two grain junction

In §13.1 we discussed a model for superconducting grains. Consider now only a single pair of
grains, and write

K̂ = −J cos(φ
L
− φ

R
) +

2e2

C
L

M2
L
+

2e2

C
R

M2
R
− 2µ

L
M

L
− 2µ

R
M

R
, (13.97)

where M
L,R is the number of Cooper pairs on each grain in excess of the background charge,

which we assume here to be a multiple of 2e. From the Heisenberg equations of motion, we
have that

Ṁ
L
=
i

~

[
K̂,M

L

]
=
J

~
sin(φ

R
− φ

L
) , (13.98)

which follows from the fact that M
L
= −i ∂/∂φ

L
. Similarly, we find Ṁ

R
= −J

~
sin(φ

R
− φ

L
). An

electrical current I = 2eṀ
L
= −2eṀ

R
then flows from left to right. The equations of motion for

the phases are

φ̇
L
=
i

~

[
K̂ , φ

L

]
=

4e2M
L

~C
L

− 2µ
L

~

φ̇
R
=
i

~

[
K̂ , φ

R

]
=

4e2M
R

~C
R

− 2µ
R

~
.

(13.99)

Let’s assume the grains are large, so their self-capacitances are large too. In that case, we can
neglect the Coulomb energy of each grain, and we obtain the Josephson equations

dφ

dt
= −2eV

~
, I(t) = Ic sinφ(t) , (13.100)
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where eV = µ
R
− µ

L
, Ic = 2eJ/~ , and φ ≡ φ

R
− φ

L
. When quasiparticle tunneling is accounted

for, the second of the Josephson equations is modified to

I = Ic sinφ+
(
G0 +G1 cos φ

)
V , (13.101)

where G0 ≡ G
N

is the quasiparticle contribution to the current, and G1 accounts for higher
order effects.

13.3.2 Effect of in-plane magnetic field

Thus far we have assumed that the effective hopping amplitude t between the L and R banks
is real. This is valid in the absence of an external magnetic field, which breaks time-reversal. In

the presence of an external magnetic field, t is replaced by t → t eiγ , where γ = e
~c

R∫
L

A · dl is the

Aharonov-Bohm phase. Without loss of generality, we consider the junction interface to lie in
the (x, y) plane, and we take H = H ŷ. We are then free to choose the gauge A = −Hxẑ. Then

γ(x) =
e

~c

R∫

L

A · dl = − e

~c
H (λ

L
+ λ

R
+ d) x , (13.102)

where λ
L,R are the penetration depths for the two superconducting banks, and d is the junction

separation. Typically λ
L,R ∼ 100 Å − 1000 Å, while d ∼ 10 Å, so usually we may neglect the

junction separation in comparison with the penetration depth.

In the case of the single particle current I
N
, we needed the commutators

[
Ĥ+

T
(t), Ĥ−

T
(0)
]

and[
Ĥ−

T
(t), Ĥ+

T
(0)
]
. Since Ĥ+

T
∝ t while Ĥ−

T
∝ t∗, the result depends on the product |t|2, which has

no phase. Thus, I
N

is unaffected by an in-plane magnetic field. For the Josephson pair tunneling

current I
J
, however, we need

[
Ĥ+

T
(t), Ĥ+

T
(0)
]

and
[
Ĥ−

T
(t), Ĥ−

T
(0)
]
. The former is proportional

to t2 and the latter to t∗2. Therefore the Josephson current density is

j
J
(x) =

Ic(T )

A
sin

(
φ− 2e

~c
Hdeffx−

2eV t

~

)
, (13.103)

where deff ≡ λ
L
+ λ

R
+ d and φ = φ

R
− φ

L
. Note that it is 2eHdeff/~c = arg(t2) which appears

in the argument of the sine. This may be interpreted as the Aharonov-Bohm phase accrued
by a tunneling Cooper pair. We now assume our junction interface is a square of dimensions
Lx × Ly. At V = 0, the total Josephson current is then5

I
J
=

Lx∫

0

dx

Ly∫

0

dy j(x) =
IcφL

πΦ
sin(πΦ/φ

L
) sin(φ− πΦ/φ

L
) , (13.104)

5Take care not to confuse φ
L

, the phase of the left superconducting bank, with φ
L

, the London flux quantum hc/2e.
To the untrained eye, these symbols look identical.
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Figure 13.6: (a) Fraunhofer pattern of Josephson current versus flux due to in-plane magnetic
field. (b) Sketch of Josephson junction experiment yielding (a). (c) Two-point superconducting
quantum interferometer.

where Φ ≡ HLxdeff is the total magnetic flux through the junction. The maximum current
occurs when φ− πΦ/φ

L
= ±1

2
π, where its magnitude is

Imax(Φ) = Ic

∣∣∣∣∣
sin(πΦ/φ

L
)

πΦ/φ
L

∣∣∣∣∣ . (13.105)

The shape Imax(Φ) is precisely that of the single slit Fraunhofer pattern from geometrical optics!
(See Fig. 13.6.)

13.3.3 Two-point quantum interferometer

Consider next the device depicted in Fig. 13.6(c) consisting of two weak links between super-
conducting banks. The current flowing from L to R is

I = Ic,1 sinφ1 + Ic,2 sin φ2 . (13.106)

where φ1 ≡ φ
L,1 − φ

R,1 and φ2 ≡ φ
L,2 − φ

R,2 are the phase differences across the two Josephson
junctions. The total flux Φ inside the enclosed loop is

φ2 − φ1 =
2πΦ

φ
L

≡ 2γ . (13.107)

Writing φ2 = φ1 + 2γ, we extremize I(φ1, γ) with respect to φ1, and obtain

Imax(γ) =
√

(Ic,1 + Ic,2)
2 cos2γ + (Ic,1 − Ic,2)

2 sin2γ . (13.108)
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If Ic,1 = Ic,2 , we have Imax(γ) = 2Ic | cos γ |. This provides for an extremely sensitive measure-
ment of magnetic fields, since γ = πΦ/φ

L
and φ

L
= 2.07× 10−7Gcm2. Thus, a ring of area 1 cm2

allows for the detection of fields on the order of 10−7G. This device is known as a Supercon-
ducting QUantum Interference Device, or SQUID. The limits of the SQUID’s sensitivity are set
by the noise in the SQUID or in the circuit amplifier.

13.3.4 RCSJ Model

In circuits, a Josephson junction, from a practical point of view, is always transporting current
in parallel to some resistive channel. Josephson junctions also have electrostatic capacitance
as well. Accordingly, consider the resistively and capacitively shunted Josephson junction (RCSJ), a
sketch of which is provided in Fig. 13.8(c). The equations governing the RCSJ model are

I = C V̇ +
V

R
+ Ic sinφ

V =
~

2e
φ̇ ,

(13.109)

where we again take I to run from left to right. If the junction is voltage-biased, then integrating
the second of these equations yields φ(t) = φ0+ωJ

t , where ω
J
= 2eV/~ is the Josephson frequency.

The current is then

I =
V

R
+ Ic sin(φ0 + ω

J
t) . (13.110)

If the junction is current-biased, then we substitute the second equation into the first, to obtain

~C

2e
φ̈+

~

2eR
φ̇+ Ic sin φ = I . (13.111)

We adimensionalize by writing s ≡ ωpt, with ωp = (2eIc/~C)
1/2 is the Josephson plasma frequency

(at zero current). We then have

d2φ

ds2
+

1

Q

dφ

ds
= j − sinφ ≡ −du

dφ
, (13.112)

where Q = ωpτ with τ = RC, and j = I/Ic. The quantity Q2 is called the McCumber-Stewart
parameter. The resistance is R(T ≈ Tc) = R

N
, while R(T ≪ Tc) ≈ R

N
exp(∆/k

B
T ). The dimen-

sionless potential energy u(φ) is given by

u(φ) = −jφ − cosφ (13.113)

and resembles a ‘tilted washboard’; see Fig. 13.8(a,b). This is an N = 2 dynamical system on a

cylinder. Writing ω ≡ φ̇, we have

d

ds

(
φ
ω

)
=

(
ω

j − sinφ−Q−1ω

)
. (13.114)
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Figure 13.7: Phase flows for the equation φ̈ + Q−1φ̇ + sinφ = j. Left panel: 0 < j < 1; note the
separatrix (in black), which flows into the stable and unstable fixed points. Right panel: j > 1.
The red curve overlying the thick black dot-dash curve is a limit cycle.

Note that φ ∈ [0, 2π] while ω ∈ (−∞,∞). Fixed points satisfy ω = 0 and j = sinφ. Thus, for
|j| > 1, there are no fixed points.

Strong damping

The RCSJ model dynamics are given by the second order ODE,

∂2sφ+Q−1∂sφ = −u′(φ) = j − sinφ . (13.115)

The parameter Q = ωpτ determines the damping, with large Q corresponding to small damp-

ing. Consider the large damping limit Q ≪ 1. In this case the inertial term proportional to φ̈
may be ignored, and what remains is a first order ODE. Restoring dimensions,

dφ

dt
= Ω (j − sinφ) , (13.116)

where Ω = ω2
pRC = 2eIcR/~. We are effectively setting C ≡ 0, hence this is known as the RSJ

model. The above equation describes a N = 1 dynamical system on the circle. When |j| < 1,
i.e. |I| < Ic, there are two fixed points, which are solutions to sin φ∗ = j. The fixed point where
cosφ∗ > 0 is stable, while that with cosφ∗ < 0 is unstable. The flow is toward the stable fixed
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Figure 13.8: (a) Dimensionless washboard potential u(φ) for I/Ic = 0.5. (b) u(φ) for I/Ic = 2.0.
(c) The resistively and capacitively shunted Josephson junction (RCSJ). (d) 〈V 〉 versus I for the
RSJ model.

point. At the fixed point, φ is constant, which means the voltage V = ~φ̇/2e vanishes. There is
current flow with no potential drop.

Consider the case j > 1. In this case there is a bottleneck in the φ evolution in the vicinity of

φ = 1
2
π, where φ̇ is smallest, but φ̇ > 0 always. We compute the average voltage

〈V 〉 = ~

2e
〈φ̇〉 = ~

2e
· 2π
T

, (13.117)

where T is the rotational period for φ(t). We compute this using the equation of motion:

ΩT =

2π∫

0

dφ

j − sin φ
=

2π√
j2 − 1

. (13.118)

Thus,

〈V 〉 = ~

2e

√
j2 − 1 · 2eIcR

~
= R

√
I2 − I2c . (13.119)

This behavior is sketched in Fig. 13.8(d).
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Josephson plasma oscillations

When I < Ic, the phase undergoes damped oscillations in the washboard minima. Expanding
about the fixed point, we write φ = sin−1j + δφ, and obtain

d2δφ

ds2
+

1

Q

d δφ

ds
= −

√
1− j2 δφ . (13.120)

This is the equation of a damped harmonic oscillator. With no damping (Q = ∞), the oscillation
frequency is

Ω(I) = ωp

(
1− I2

I2c

)1/4
. (13.121)

When Q is finite, the frequency of the oscillations has an imaginary component, with solutions

ω±(I) = −
i ωp

2Q
± ωp

√(
1− I2

I2c

)1/2
− 1

4Q2
. (13.122)

Retrapping current in underdamped junctions

The energy of the junction is given by

E = 1
2
CV 2 +

~Ic
2e

(1− cosφ) . (13.123)

The first term may be thought of as a kinetic energy and the second as potential energy. Because
the system is dissipative, energy is not conserved. Rather,

Ė = CV V̇ +
~Ic
2e

φ̇ sin φ = V
(
CV̇ + Ic sinφ

)
= V

(
I − V

R

)
. (13.124)

Suppose the junction were completely undamped, i.e. R = 0. Then as the phase slides down
the tilted washboard for |I| < Ic, it moves from peak to peak, picking up speed as it moves
along. When R > 0, there is energy loss, and φ(t) might not make it from one peak to the next.
Suppose we start at a local maximum φ = π with V = 0. What is the energy when φ reaches
3π? To answer that, we assume that energy is almost conserved, so

E = 1
2
CV 2 +

~Ic
2e

(1− cosφ) ≈ ~Ic
e

⇒ V =

(
e~Ic
eC

)1/2∣∣cos(1
2
φ)
∣∣ . (13.125)

then

(∆E)cycle =

∞∫

−∞

dt V

(
I − V

R

)
=

~

2e

π∫

−π

dφ

{
I − 1

R

(
e~Ic
eC

)1/2
cos(1

2
φ)

}

=
~

2e

{
2πI − 4

R

(
e~Ic
eC

)1/2}
=

h

2e

{
I − 4Ic

πQ

}
.

(13.126)
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Thus, we identify Ir ≡ 4Ic/πQ ≪ Ic as the retrapping current. The idea here is to focus on the
case where the phase evolution is on the cusp between trapped and free. If the system loses
energy over the cycle, then subsequent motion will be attenuated, and the phase dynamics will
flow to the zero voltage fixed point. Note that if the current I is reduced below Ic and then
held fixed, eventually the junction will dissipate energy and enter the zero voltage state for any
|I| < Ic. But if the current is swept and İ/I is faster than the rate of energy dissipation, the
retrapping occurs at I = Ir.

Thermal fluctuations

Restoring the proper units, the potential energy is U(φ) = (~Ic/2e) u(φ). Thus, thermal fluctua-
tions may be ignored provided

k
B
T ≪ ~Ic

2e
=

~

2eR
N

· π∆
2e

tanh

(
∆

2k
B
T

)
, (13.127)

where we have invoked the Ambegaokar-Baratoff formula, Eqn. 13.96. BCS theory gives ∆ =
1.764 k

B
Tc , so we require

k
B
T ≪ h

8R
N
e2

· (1.764 k
B
Tc) · tanh

(
0.882 Tc

T

)
. (13.128)

In other words,
R

N

RK

≪ 0.22 Tc
T

tanh

(
0.882 Tc

T

)
, (13.129)

where RK = h/e2 = 25812.8Ω is the quantum unit of resistance6.

We can model the effect of thermal fluctuations by adding a noise term to the RCSJ model,
writing

CV̇ +
V

R
+ Ic sin φ = I +

Vf
R

, (13.130)

where Vf(t) is a stochastic term satisfying
〈
Vf(t) Vf(t

′)
〉
= 2k

B
TR δ(t− t′) . (13.131)

Adimensionalizing, we now have

d2φ

ds2
+ γ

dφ

ds
= −∂u

∂φ
+ η(s) , (13.132)

where s = ωpt , γ = 1/ωpRC , u(φ) = −jφ− cosφ , j = I/Ic(T ) , and

〈
η(s) η(s′)

〉
=

2ωpkB
T

I2cR
δ(s− s′) ≡ 2Θ δ(s− s′) . (13.133)

6RK is called the Klitzing for Klaus von Klitzing, the discoverer of the integer quantum Hall effect.
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Thus, Θ ≡ ωpkB
T/I2cR is a dimensionless measure of the temperature. Our problem is now that

of a damped massive particle moving in the washboard potential and subjected to stochastic
forcing due to thermal noise.

Writing ω = ∂sφ, we have

∂sφ = ω

∂sω = −u′(φ)− γω +
√
2Θ η(s) .

(13.134)

In this case, W (s) =
s∫
0

ds′ η(s′) describes a Wiener process:
〈
W (s)W (s′)

〉
= min(s, s′). The

probability distribution P (φ, ω, s) then satisfies the Fokker-Planck equation7,

∂P

∂s
= − ∂

∂φ

(
ωP
)
+

∂

∂ω

{[
u′(φ) + γω

]
P
}
+Θ

∂2P

∂ω2
. (13.135)

We cannot make much progress beyond numerical work starting from this equation. However,
if the mean drift velocity of the ‘particle’ is everywhere small compared with the thermal ve-

locity vth ∝
√
Θ, and the mean free path ℓ ∝ vth/γ is small compared with the scale of variation

of φ in the potential u(φ), then, following the classic treatment by Kramers, we can convert
the Fokker-Planck equation for the distribution P (φ, ω, t) to the Smoluchowski equation for the
distribution P (φ, t)8. These conditions are satisfied when the damping γ is large. To proceed
along these lines, simply assume that ω relaxes quickly, so that ∂sω ≈ 0 at all times. This says

ω = −γ−1u′(φ) + γ−1
√
2Θ η(s). Plugging this into ∂sφ = ω, we have

∂sφ = −γ−1u′(φ) + γ−1
√
2Θ η(s) , (13.136)

the Fokker-Planck equation for which is9

∂P (φ, s)

∂s
=

∂

∂φ

[
γ−1u′(φ)P (φ, s)

]
+ γ−2Θ

∂2P (φ, s)

∂φ2
, (13.137)

which is called the Smoluchowski equation. Note that −γ−1u′(φ) plays the role of a local drift
velocity, and γ−2Θ that of a diffusion constant. This may be recast as

∂P

∂s
= −∂W

∂φ
, W (φ, s) = −γ−1

(
∂φu
)
P − γ−2Θ ∂φP . (13.138)

7For the stochastic coupled ODEs dua = Aa dt+Bab dWb where each Wa(t) is an independent Wiener process, i.e.
dWa dWb = δab dt, then, using the Stratonovich stochastic calculus, one has the Fokker-Planck equation ∂tP =
−∂a(AaP ) + 1

2
∂a
[
Bac ∂b(BbcP )

]
.

8See M. Ivanchenko and L. A. Zil’berman, Sov. Phys. JETP 28, 1272 (1969) and, especially, V. Ambegaokar and B.
I. Halperin, Phys. Rev. Lett. 22, 1364 (1969).

9For the stochastic differential equation dx = v
d
dt +

√
2DdW (t), where W (t) is a Wiener process, the Fokker-

Planck equation is ∂tP = −v
d
∂xP +D∂2

xP .
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In steady state, we have that ∂sP = 0 , hence W must be a constant. We also demand P (φ, s) =
P (φ+ 2π, s). To solve, define F (φ) ≡ e−γ u(φ)/Θ . In steady state, we then have

∂

∂φ

(
P

F

)
= −γ

2W

Θ
· 1
F

. (13.139)

Integrating,

P (φ)

F (φ)
− P (0)

F (0)
= −γ

2W

Θ

φ∫

0

dφ′

F (φ′)

P (2π)

F (2π)
− P (φ)

F (φ)
= −γ

2W

Θ

2π∫

φ

dφ′

F (φ′)
.

(13.140)

Multiply the first of these by F (0) and the second by F (2π), and then add, remembering that
P (2π) = P (0). One then obtains

P (φ) =
γ2W

Θ
· F (φ)

F (2π)− F (0)
·





φ∫

0

dφ′ F (0)

F (φ′)
+

2π∫

φ

dφ′ F (2π)

F (φ′)



 . (13.141)

We now are in a position to demand that P (φ) be normalized. Integrating over the circle, we
obtain

W =
G(j, γ)

γ
(13.142)

where

1

G(j, γ/Θ)
=

γ/Θ

exp(πγ/Θ)− 1




2π∫

0

dφ f(φ)






2π∫

0

dφ′

f(φ′)


+

γ

Θ

2π∫

0

dφ f(φ)

2π∫

φ

dφ′

f(φ′)
, (13.143)

where f(φ) ≡ F (φ)/F (0) = e−γ u(φ)/Θ eγ u(0)/Θ is normalized such that f(0) = 1.

It remains to relate the constant W to the voltage. For any function g(φ), we have

d

dt

〈
g
(
φ(s)

)〉
=

2π∫

0

dφ
∂P

∂s
g(φ) = −

2π∫

0

dφ
∂W

∂φ
g(φ) =

2π∫

0

dφ W (φ) g′(φ) . (13.144)

Technically we should restrict g(φ) to be periodic, but we can still make sense of this for g(φ) =
φ, with

〈
∂sφ
〉
=

2π∫

0

dφW (φ) = 2πW , (13.145)
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Figure 13.9: Left: scaled current bias j = I/Ic versus scaled voltage v = 〈V 〉/IcR for different
values of the parameter γ/Θ, which is the ratio of damping to temperature. Right: detail of j(v)
plots. From Ambegaokar and Halperin (1969).

where the last expression on the RHS holds in steady state, where W is a constant. We could
have chosen g(φ) to be a sawtooth type function, rising linearly on φ ∈ [0, 2π) then discontin-
uously dropping to zero, and only considered the parts where the integrands were smooth.
Thus, after restoring physical units,

v ≡ 〈V 〉
IcR

=
~ωp

2eIcR
〈∂sφ〉 = 2π G(j, γ/Θ) . . (13.146)

AC Josephson effect

Suppose we add an AC bias to V , writing

V (t) = V0 + V1 sin(ω1t) . (13.147)

Integrating the Josephson relation φ̇ = 2eV/~, we have

φ(t) = ω
J
t+

V1
V0

ω
J

ω1

cos(ω1t) + φ0 . (13.148)

where ω
J
= 2eV0/~ . Thus,

I
J
(t) = Ic sin

(
ω

J
t+

V1 ωJ

V0 ω1

cos(ω1t) + φ0

)
. (13.149)
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Figure 13.10: (a) Shapiro spikes in the voltage-biased AC Josephson effect. The Josephson
current has a nonzero average only when V0 = n~ω1/2e, where ω1 is the AC frequency. From
http://cmt.nbi.ku.dk/student projects/bsc/heiselberg.pdf. (b) Shapiro steps in the current-
biased AC Josephson effect.

We now invoke the Bessel function generating relation,

eiz cos θ =

∞∑

n=−∞

Jn(z) e
−inθ (13.150)

to write

I
J
(t) = Ic

∞∑

n=−∞

Jn

(
V1 ωJ

V0 ω1

)
sin
[
(ω

J
− nω1) t+ φ0

]
. (13.151)

Thus, I
J
(t) oscillates in time, except for terms for which

ω
J
= nω1 ⇒ V0 = n

~ω1

2e
, (13.152)

in which case

I
J
(t) = Ic Jn

(
2eV1
~ω1

)
sinφ0 . (13.153)

We now add back in the current through the resistor, to obtain

〈
I(t)

〉
=
V0
R

+ Ic Jn

(
2eV1
~ω1

)
sin φ0

∈
[
V0
R

− Ic Jn

(
2eV1
~ω1

)
,
V0
R

+ Ic Jn

(
2eV1
~ω1

)]
.

(13.154)

This feature, depicted in Fig. 13.10(a), is known as Shapiro spikes.
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Current-biased AC Josephson effect

When the junction is current-biased, we must solve

~C

2e
φ̈+

~

2eR
φ̇+ Ic sinφ = I(t) , (13.155)

with I(t) = I0 + I1 cos(ω1t). This results in the Shapiro steps shown in Fig. 13.10(b). To analyze
this equation, we write our phase space coordinates on the cylinder as (x1, x2) = (φ, ω), and
add the forcing term to Eqn. 13.114, viz.

d

dt

(
φ
ω

)
=

(
ω

j − sin φ−Q−1ω

)
+ ε

(
0

cos(νs)

)

dx

ds
= V (x) + εf(x, s) ,

(13.156)

where s = ωpt , ν = ω1/ωp , and ε = I1/Ic . As before, we have j = I0/Ic . When ε = 0, we have
the RCSJ model, which for |j| > 1 has a stable limit cycle and no fixed points. The phase curves
for the RCSJ model and the limit cycle for |j| > 1 are depicted in Fig. 13.7. In our case, the
forcing term f(x, s) has the simple form f1 = 0 , f2 = cos(νs), but it could be more complicated
and nonlinear in x.

The phenomenon we are studying is called synchronization10. Linear oscillators perturbed by
a harmonic force will oscillate with the forcing frequency once transients have damped out.
Consider, for example, the equation ẍ + 2βẋ + ω2

0x = f0 cos(Ωt), where β > 0 is a damping
coefficient. The solution is x(t) = A(Ω) cos

(
Ωt + δ(Ω)

)
+ xh(t), where xh(t) solves the homo-

geneous equation (i.e. with f0 = 0) and decays to zero exponentially at large times. Nonlinear
oscillators, such as the RCSJ model under study here, also can be synchronized to the external
forcing, but not necessarily always. In the case of the Duffing oscillator, ẍ+2βẋ+ x+ ηx3, with
β > 0 and η > 0, the origin (x = 0, ẋ = 0) is still a stable fixed point. In the presence of an
external forcing ε f0 cos(Ωt), with β, η, and ε all small, varying the detuning δΩ = Ω − 1 (also
assumed small) can lead to hysteresis in the amplitude of the oscillations, but the oscillator is
always entrained, i.e. synchronized with the external forcing.

The situation changes considerably if the nonlinear oscillator has no stable fixed point but
rather a stable limit cycle. This is the case, for example, for the van der Pol equation ẍ+2β(x2−
1)ẋ+ x = 0, and it is also the case for the RCSJ model. The limit cycle x0(s) has a period, which
we call T0, so x(s+T0) = x(s). All points on the limit cycle (LC) are fixed under the T0-advance
map gT0 , where gτx(s) = x(s + τ). We may parameterize points along the LC by an angle θ

which increases uniformly in s, so that θ̇ = ν0 = 2π/T0. Furthermore, since each point x0(θ) is a
fixed point under gT0 , and the LC is presumed to be attractive, we may define the θ-isochrone as

the set of points {x} in phase space which flow to x0(θ) under repeated application of gT0 . For

an N-dimensional phase space, the isochrones are (N − 1)-dimensional hypersurfaces. For the

10See A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization (Cambridge, 2001).
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RCSJ model, which has N = 2, the isochrones are curves θ = θ(φ, ω) on the (φ, ω) cylinder. In
particular, the θ-isochrone is a curve which intersects the LC at the point x0(θ). We then have

dθ

ds
=

N∑

j=1

∂θ

∂xj

dxj
ds

= ν0 + ε
N∑

j=1

∂θ

∂xj
fj
(
x(s), s

)
.

(13.157)

If we are close to the LC, we may replace x(s) on the RHS above with x0(θ), yielding

dθ

ds
= ν0 + εF (θ, s) , (13.158)

where

F (θ, s) =

N∑

j=1

∂θ

∂xj

∣∣∣∣∣
x0(θ)

fj
(
x0(θ), s

)
. (13.159)

OK, so now here’s the thing. The function F (θ, s) is separately periodic in both its arguments,
so we may write

F (θ, s) =
∑

k,l

Fk,l e
i(kθ+lνs) , (13.160)

where f
(
x, s+ 2π

ν

)
= f(x, s), i.e. ν is the forcing frequency. The unperturbed solution has θ̇ = ν0,

hence the forcing term in Eqn. 13.158 is resonant when kν0+ lν ≈ 0. This occurs when ν ≈ p
q
ν0 ,

where p and q are relatively prime integers. The resonance condition is satisfied when k = rp
and l = −rq for any integer r

.

We now separate the resonant from nonresonant terms in the (k, l) sum, writing

θ̇ = ν0 + ε
∞∑

r=−∞

Frp,−rq e
ir(pθ−qνs) +NRT , (13.161)

where NRT stands for “non-resonant terms”. We next average over short time scales to elim-
inate these nonresonant terms, and focus on the dynamics of the average phase 〈θ〉. Defining
ψ ≡ p 〈θ〉 − q νs, we have

ψ̇ = p 〈θ̇〉 − qν

= (pν0 − qν) + εp

∞∑

r=−∞

Frp,−rq e
irψ

= −δ + εG(ψ) ,

(13.162)



13.3. THE JOSEPHSON EFFECT 35

Figure 13.11: Left: graphical solution of ψ̇ = −δ + εG(ψ). Fixed points are only possible if
−εGmin 6 δ 6 Gmax. Right: synchronization region, shown in grey, in the (δ, ε) plane.

where δ ≡ qν−pν0 is the detuning, andG(ψ) ≡ p
∑

r Frp,−rq e
irψ is the sum over resonant terms.

This last equation is that of a simple N = 1 dynamical system on the circle! If the detuning δ
falls within the range

[
εGmin , εGmax

]
, then ψ flows to a stable fixed point where δ = εG(ψ∗).

The oscillator is then synchronized with the forcing, because 〈θ̇〉 → q
p
ν. If the detuning is

too large and lies outside this range, then there is no synchronization. Rather, ψ(s) increases
linearly with the time s, and 〈θ(t)〉 = θ0 +

q
p
νs + 1

p
ψ(s) , where

dt =
dψ

εG(ψ)− δ
=⇒ Tψ =

2π∫

0

dψ

εG(ψ)− δ
. (13.163)

For weakly forced, weakly nonlinear oscillators, resonance occurs only for ν = ±ν0 , but in
the case of weakly forced, strongly nonlinear oscillators, the general resonance condition is
ν = p

q
ν0. The reason is that in the case of weakly nonlinear oscillators, the limit cycle is itself

harmonic to zeroth order. There are then only two frequencies in its Fourier decomposition, i.e.
±ν0. In the strongly nonlinear case, the limit cycle is decomposed into a fundamental frequency
ν0 plus all its harmonics. In addition, the forcing f(x, s) can itself can be a general periodic
function of s, involving multiples of the fundamental forcing frequency ν. For the case of the
RCSJ, the forcing function is harmonic and independent of x. This means that only the l = ±1
terms enter in the above analysis.
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13.4 Ultrasonic Attenuation

Recall the electron-phonon Hamiltonian,

Ĥel−ph =
1√
V

∑

k,k′

σ,λ

gkk′λ

(
a†k′−k,λ + ak−k′,λ

)
c†kσ ck′σ (13.164)

=
1√
V

∑

k,k
σ,λ

gkk′λ

(
a†k′−k,λ + ak−k′,λ

)(
ukγ

†
kσ − σ e−iφ vk γ−k−σ

)(
uk′γk′σ − σ eiφ vk′ γ

†
−k′ −σ

)
.

Let’s now compute the phonon lifetime using Fermi’s Golden Rule11. In the phonon absorption
process, a phonon of wavevector q is absorbed by an electron of wavevector k, converting it
into an electron of wavevector k′ = k + q. The net absorption rate of (q, λ) phonons is then is
given by the rate of

Γ abs
qλ =

2πnq,λ

V

∑

k,k′,σ

∣∣gkk′λ

∣∣2 (ukuk′−vkvk′

)2
fkσ
(
1−fk′σ

)
δ(Ek′−Ek−~ωqλ

)
δk′,k+qmodG . (13.165)

Here nqλ is the Bose function and fkσ the Fermi function, and we have assumed that the phonon
frequencies are all smaller than 2∆, so we may ignore quasiparticle pair creation and pair anni-
hilation processes. Note that the electron Fermi factors yield the probability that the state |kσ〉
is occupied while |k′σ〉 is vacant. Mutatis mutandis, the emission rate of these phonons is12

Γ em
qλ =

2π(nq,λ + 1)

V

∑

k,k′,σ

∣∣gkk′λ

∣∣2 (ukuk′ − vkvk′

)2
fk′σ

(
1− fkσ

)
δ(Ek′ − Ek − ~ωqλ

)
δk′,k+qmodG .

(13.166)
We then have

dnqλ

dt
= −αqλ nqλ + sqλ , (13.167)

where

αqλ =
4π

V

∑

k,k′

∣∣gkk′λ

∣∣2 (ukuk′ − vkvk′

)2 (
fk − fk′

)
δ(Ek′ − Ek − ~ωqλ

)
δk′,k+qmodG (13.168)

is the attenuation rate, and sqλ is due to spontaneous emission,

sqλ =
4π

V

∑

k,k′

∣∣gkk′λ

∣∣2 (ukuk′ − vkvk′

)2
fk′

(
1− fk

)
δ(Ek′ − Ek − ~ωqλ

)
δk′,k+qmodG . (13.169)

11Here we follow §3.4 of J. R. Schrieffer, Theory of Superconductivity (Benjamin-Cummings, 1964).
12Note the factor of n + 1 in the emission rate, where the additional 1 is due to spontaneous emission. The

absorption rate includes only a factor of n.
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Figure 13.12: Phonon absorption and emission processes.

We now expand about the Fermi surface, writing

1

V

∑

k,k′

F (ξk, ξk′) δk′,k+q =
1
4
g2(µ)

∞∫

−∞

dξ

∞∫

−∞

dξ′ F (ξ, ξ′)

∫
dk̂

4π

∫
dk̂′

4π
δ(k

F
k̂′ − k

F
k̂ − q) . (13.170)

for any function F (ξ, ξ′). The integrals over k̂ and k̂′ give
∫
dk̂

4π

∫
dk̂′

4π
δ(k

F
k̂′ − k

F
k̂− q) =

1

4πk3
F

· kF

2q
·Θ(2k

F
− q) . (13.171)

The step function appears naturally because the constraint kFk̂
′ = kFk̂+q requires that q connect

two points which lie on the metallic Fermi surface, so the largest |q| can be is 2kF. We will drop

the step function in the following expressions, assuming q < 2kF, but it is good to remember
that it is implicitly present. Thus, ignoring Umklapp processes, we have

αqλ =
g2(µ) |gqλ|2

8 k2
F
q

∞∫

−∞

dξ

∞∫

−∞

dξ′ (uu′ − vv′)2 (f − f ′) δ(E ′ − E − ~ωqλ

)
. (13.172)

We now use

(uu′ ± vv′)2 =

(√
E + ξ

2E

√
E ′ + ξ′

2E ′
±
√
E − ξ

2E

√
E ′ − ξ′

2E ′

)2
=
EE ′ + ξξ′ ±∆2

EE ′
(13.173)

and change variables
(
ξ = E dE/

√
E2 −∆2

)
to write

αqλ =
g2(µ) |gqλ|2

2 k2
F
q

∞∫

∆

dE

∞∫

∆

dE ′ (EE ′ −∆2)(f − f ′)√
E2 −∆2

√
E ′ 2 −∆2

δ(E ′ − E − ~ωqλ

)
. (13.174)

We now satisfy the Dirac delta function, which means we eliminate the E ′ integral and set
E ′ = E + ~ωqλ everywhere else in the integrand. Clearly the f − f ′ term will be first order in
the smallness of ~ωq, so in all other places we may set E ′ = E to lowest order. This simplifies
the above expression considerably, and we are left with

αqλ =
g2(µ) |gqλ|2 ~ωqλ

2 k2
F
q

∞∫

∆

dE

(
− ∂f

∂E

)
=
g2(µ) |gqλ|2 ~ωqλ

2 k2
F
q

f(∆) , (13.175)
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Figure 13.13: Ultrasonic attenuation in tin, compared with predictions of the BCS theory. From
R. W. Morse, IBM Jour. Res. Dev. 6, 58 (1963).

where q < 2kF is assumed. For q → 0, we have ωqλ/q → cλ(q̂), the phonon velocity.

We may now write the ratio of the phonon attenuation rate in the superconducting and normal
states as

α
S
(T )

α
N
(T )

=
f(∆)

f(0)
=

2

exp
(

∆(T )
k
B
T

)
+ 1

. (13.176)

The ratio naturally goes to unity at T = Tc , where ∆ vanishes. Results from early experiments
on superconducting Sn are shown in Fig. 13.13.

13.5 Nuclear Magnetic Relaxation

We start with the hyperfine Hamiltonian,

Ĥ
HF

= A
∑

k,k′

∑

R

ϕ∗
k(R)ϕk′(R)

[
J+
R c

†
k↓ ck′↑ + J−

R c
†
k↑ ck′↓ + JzR

(
c†k↑ ck′↑ − c†k↓ ck′↓

)]
(13.177)

where JR is the nuclear spin operator on nuclear site R, satisfying
[
JµR , J

ν
R′

]
= i ǫµνλ J

λ
R δR,R′ , (13.178)

and where ϕk(R) is the amplitude of the electronic Bloch wavefunction (with band index sup-
pressed) on the nuclear site R. Using

ckσ = uk γkσ − σ vk e
iφ γ†−k−σ (13.179)
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we have for Skk′ = 1
2
c†kµ σµν ck′ν ,

S+
kk′ = ukuk′γ

†
k↑γk′↓ − vkvk′ γ−k↓γ

†
−k′↑ + ukvk′ e

iφ γ†k↑γ
†
−k′↑ − ukvk′ e

−iφ γ−k↓γk′↓

S−
kk′ = ukuk′γ

†
k↓γk′↑ − vkvk′ γ−k↑γ

†
−k′↓ − ukvk′ e

iφ γ†k↓γ
†
−k′↓ + ukvk′ e

−iφ γ−k↑γk′↑ (13.180)

Szkk′ = 1
2

∑

σ

(
ukuk′ γ

†
kσγk′σ + vkvk′ γ−k−σγ

†
−k′ −σ − σ ukvk′ e

iφ γ†kσγ
†
−k′ −σ − σ vkuk′ e

−iφ γ−k−σγk′σ

)
.

Let’s assume our nuclei are initially spin polarized, and let us calculate the rate 1/T1 at which
the Jz component of the nuclear spin relaxes. Again appealing to the Golden Rule,

1

T1
= 2π |A|2

∑

k,k′

|ϕk(0)|2 |ϕk′(0)|2
(
ukuk′ + vkvk′

)2
fk
(
1− fk′

)
δ(Ek′ − Ek − ~ω) (13.181)

where ω is the nuclear spin precession frequency in the presence of internal or external mag-

netic fields. Assuming ϕk(R) = C/
√
V , we write V −1

∑
k → 1

2
g(µ)

∫
dξ and we appeal to Eqn.

13.173. Note that the coherence factors in this case give (uu′ + vv′)2, as opposed to (uu′ − vv′)2

as we found in the case of ultrasonic attenuation (more on this below). What we then obtain is

1

T1
= 2π |A|2 |C|4 g2(µ)

∞∫

∆

dE
E(E + ~ω) + ∆2

√
E2 −∆2

√
(E + ~ω)2 −∆2

f(E)
[
1− f(E + ~ω)

]
. (13.182)

Let’s first evaluate this expression for normal metals, where ∆ = 0. We have

1

T1,N
= 2π |A|2 |C|4 g2(µ)

∞∫

0

dξ f(ξ)
[
1− f(ξ + ~ω)

]
= π |A|2 |C|4 g2(µ) k

B
T , (13.183)

where we have assumed ~ω ≪ k
B
T , and used f(ξ)

[
1 − f(ξ)

]
= −k

B
T f ′(ξ). The assumption

ω → 0 is appropriate because the nuclear magneton is so tiny: µ
N
/k

B
= 3.66 × 10−4K/T, so the

nuclear splitting is on the order of mK even at fields as high as 10 T. The NMR relaxation rate
is thus proportional to temperature, a result known as the Korringa law.

Now let’s evaluate the ratio of NMR relaxation rates in the superconducting and normal states.
Assuming ~ω ≪ ∆, we have

T−1
1,S

T−1
1,N

= 2

∞∫

∆

dE
E(E + ~ω) + ∆2

√
E2 −∆2

√
(E + ~ω)2 −∆2

(
− ∂f

∂E

)
. (13.184)

We dare not send ω → 0 in the integrand, because this would lead to a logarithmic divergence.
Numerical integration shows that for ~ω<∼ 1

2
k

B
Tc , the above expression has a peak just below

T = Tc . This is the famous Hebel-Slichter peak.
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Figure 13.14: Left: Sketch of NMR relaxation rate 1/T1 versus temperature as predicted by
BCS theory, with ~ω ≈ 0.01 kBTc , showing the Hebel-Slichter peak. Right: T1 versus Tc/T in a
powdered aluminum sample, from Y. Masuda and A. G. Redfield, Phys. Rev. 125, 159 (1962).
The Hebel-Slichter peak is seen here as a dip.

These results for acoustic attenuation and spin relaxation exemplify so-called case I and case
II responses of the superconductor, respectively. In case I, the transition matrix element is
proportional to uu′ − vv′, which vanishes at ξ = 0. In case II, the transition matrix element is
proportional to uu′ + vv′.

13.6 General Theory of BCS Linear Response

Consider a general probe of the superconducting state described by the perturbation Hamilto-
nian

V̂ (t) =
∑

k,σ

∑

k′,σ′

[
B
(
kσ | k′σ′

)
e−iωt +B∗

(
k′σ′ | kσ

)
e+iωt

]
c†kσ ck′σ′ . (13.185)

An example would be ultrasonic attenuation, where

V̂ultra(t) = U
∑

k,k′,σ

φk′−k(t) c
†
kσ ck′σ′ . (13.186)

Here φ(r) = ∇ · u is the deformation of the lattice and U is the deformation potential, with the
interaction of the local deformation with the electrons given by Uφ(r)n(r), where n(r) is the
total electron number density at r. Another example is interaction with microwaves. In this
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case, the bare dispersion is corrected by p → p+ e
c
A, hence

V̂µwave(t) =
e~

2m∗c

∑

k,k′,σ

(k + k′) ·Ak′−k(t) c
†
kσ ck′σ′ , (13.187)

where m∗ is the band mass.

Consider now a general perturbation Hamiltonian of the form

V̂ = −
∑

i

(
φi(t)C

†
i + φ∗

i (t)Ci
)

(13.188)

where Ci are operators labeled by i. We write

φi(t) =

∞∫

−∞

dω

2π
φ̂i(ω) e

−iωt . (13.189)

According to the general theory of linear response formulated in chapter 9, the power dissipa-
tion due to this perturbation is given by

P (ω) = −iω φ̂∗
i (ω) φ̂j(ω) χ̂CiC

†
j

(ω) + iω φ̂i(ω) φ̂
∗
j(ω) χ̂C†

iCj

(−ω)

− iω φ̂∗
i (ω) φ̂

∗
j(−ω) χ̂CiCj

(ω) + iω φ̂i(ω) φ̂j(−ω) χ̂C†
iC

†
j

(−ω) .
(13.190)

where Ĥ = Ĥ0 + V̂ and Ci(t) = eiĤ0t/~ Ci e
−iĤ0t/~ is the operator Ci in the interaction represen-

tation.

χ̂AB(ω) =
i

~

∞∫

0

dt e−iωt
〈[
A(t) , B(0)

]〉
(13.191)

For our application, we have i ≡ (kσ | k′σ′) and j ≡ (pµ | p′µ′), with C†
i = c†kσ ck′σ′ and Cj =

c†p′µ′cpµ , etc. So we need to compute the response function,

χ̂
C

i
C†

j

(ω) =
i

~

∞∫

0

dt
〈[
c†k′σ′(t) ckσ(t) , c

†
pµ(0) cp′µ′(0)

]〉
eiωt . (13.192)

OK, so strap in, because this is going to be a bit of a bumpy ride.

We evaluate the commutator in real time and then Fourier transform to the frequency domain.
Using Wick’s theorem for fermions13,

〈c†1 c2 c†3 c4〉 = 〈c†1 c2〉 〈c†3 c4〉 − 〈c†1 c†3〉 〈c2 c4〉+ 〈c†1 c4〉 〈c2 c†3〉 , (13.193)

13Wick’s theorem is valid when taking expectation values in Slater determinant states.
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we have

χ
CiC

†
j

(t) =
i

~

〈[
c†k′σ′(t) ckσ(t) , c

†
pµ(0) cp′µ′(0)

]〉
Θ(t) (13.194)

= − i

~

[
F a
k′σ′(t)F

b
kσ(t)− F c

kσ(t)F
d
k′σ′(t)

]
δp,k δp′,k′ δµ,σ δµ′,σ′

+
i

~

[
Ga

k′σ′(t)G
b
kσ(t)−Gc

kσ(t)G
d
k′σ′(t)

]
σσ′ δp,−k′ δp′,−k δµ,−σ′ δµ′,−σ ,

where, using the Bogoliubov transformation,

ckσ = uk γkσ − σ vk e
+iφ γ†−k−σ

c†−k−σ = uk γ
†
−k−σ + σ vk e

−iφ γkσ ,
(13.195)

we find

F a
qν(t) = −iΘ(t)

〈
c†qν(t) cqν(0)

〉
= −iΘ(t)

{
u2q e

iEqt/~ f(Eq) + v2q e
−iEqt/~

[
1− f(Eq)

]}

F b
qν(t) = −iΘ(t)

〈
cqν(t) c

†
qν(0)

〉
= −iΘ(t)

{
u2q e

−iEqt/~
[
1− f(Eq)

]
+ v2q e

iEqt/~ f(Eq)
}

F c
qν(t) = −iΘ(t)

〈
c†qν(0) cqν(t)

〉
= −iΘ(t)

{
u2q e

−iEqt/~ f(Eq) + v2q e
iEqt/~

[
1− f(Eq)

]}

F d
qν(t) = −iΘ(t)

〈
cqν(0) c

†
qν(t)

〉
= −iΘ(t)

{
u2q e

iEqt/~
[
1− f(Eq)

]
+ v2q e

−iEqt/~ f(Eq)
}

(13.196)

and

Ga
qν(t) = −iΘ(t)

〈
c†qν(t) c

†
−q−ν(0)

〉
= −iΘ(t) uq vq e

−iφ
{
eiEqt/~ f(Eq)− e−iEqt/~

[
1− f(Eq)

]}

Gb
qν(t) = −iΘ(t)

〈
cqν(t) c−q−ν(0)

〉
= −iΘ(t) uq vq e

+iφ
{
e−Eqt/~

[
1− f(Eq)

]
− e−iEqt/~ f(Eq)

}

Gc
qν(t) = −iΘ(t)

〈
c†qν(0) c

†
−q−ν(t)

〉
= −iΘ(t) uq vq e

−iφ
{
eiEqt/~

[
1− f(Eq)

]
− e−iEqt/~ f(Eq)

}

Gd
qν(t) = −iΘ(t)

〈
c†qν(0) c

†
−q−ν(t)

〉
= −iΘ(t) uq vq e

+iφ
{
e−iEqt/~ f(Eq)− eiEqt/~

[
1− f(Eq)

]}
.

(13.197)

Taking the Fourier transforms, we have14

F̂ a(ω) =
u2f

ω + E + iǫ
+

v2 (1− f)

ω − E + iǫ
, F̂ c(ω) =

u2f

ω − E + iǫ
+

v2 (1− f)

ω + E + iǫ
(13.198)

F̂ b(ω) =
u2 (1− f)

ω −E + iǫ
+

v2f

ω + E + iǫ
, F̂ d(ω) =

u2 (1− f)

ω + E + iǫ
+

v2f

ω −E + iǫ
(13.199)

14Here we are being somewhat loose and have set ~ = 1 to avoid needless notational complication. We shall
restore the proper units at the end of our calculation.
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and

Ĝa(ω) = u v e−iφ
(

f

ω + E + iǫ
− 1− f

ω − E + iǫ

)
, Ĝc(ω) = u v e+iφ

(
1− f

ω −E + iǫ
− f

ω + E + iǫ

)

(13.200)

Ĝb(ω) = u v e+iφ
(

1− f

ω + E + iǫ
− f

ω − E + iǫ

)
, Ĝd(ω) = u v e+iφ

(
f

ω + E + iǫ
− 1− f

ω −E + iǫ

)
.

(13.201)

Using the result that the Fourier transform of a product is a convolution of Fourier transforms,
we have from Eqn. 13.194,

χ̂
CiC

†
j

(ω) =
i

~
δp,k δp′,k′ δµ,σ δµ′,σ′

∞∫

−∞

dν

2π

[
F̂ c
kσ(ν) F̂

d
k′σ′(ω − ν)− F̂ a

k′σ′(ν) F̂
b
kσ(ω − ν)

]
(13.202)

+
i

~
δp,−k′ δp′,−k δµ,−σ′ δµ′,−σ

∞∫

−∞

dν

2π

[
Ĝa

kσ(ν) Ĝ
b
k′σ′(ω − ν)− Ĝc

k′σ′(ν) Ĝ
d
kσ(ω − ν)

]
.

The integrals are easily done via the contour method. For example, one has

i

∞∫

−∞

dν

2π
F̂ c
kσ(ν) F̂

d
k′σ′(ω − ν) = −

∞∫

−∞

dν

2πi

(
u2 f

ν − E + iǫ
+
v2 (1− f)

ν + E + iǫ

)(
u′ 2 (1− f ′)

ω − ν + E ′ + iǫ
+

v′ 2 f ′

ω − ν − E ′ + iǫ

)

=
u2 u′ 2 (1− f) f ′

ω + E − E ′ + iǫ
+

v2 u′ 2 ff ′

ω − E − E ′ + iǫ
+
u2 v′ 2 (1− f)(1− f ′)

ω + E + E ′ + iǫ
+

v2 v′ 2 f(1− f ′)

ω − E + E ′ + iǫ
. (13.203)

One then finds (with proper units restored),

χ̂
CiC

†
j

(ω) = δp,k δp′,k′ δµ,σ δµ′,σ′

(
u2u′ 2 (f − f ′)

~ω − E + E ′ + iǫ
− v2v′ 2 (f − f ′)

~ω + E − E ′ + iǫ
(13.204)

+
u2v′ 2 (1− f − f ′)

~ω + E + E ′ + iǫ
− v2u′ 2 (1− f − f ′)

~ω − E − E ′ + iǫ

)

+ δp,−k′ δp′,−k δµ,−σ′ δµ′,−σ

(
f ′ − f

~ω −E + E ′ + iǫ
− f ′ − f

~ω + E −E ′ + iǫ

+
1− f − f ′

~ω + E + E ′ + iǫ
− 1− f − f ′

~ω −E − E ′ + iǫ

)
uvu′v′σσ′ .

We are almost done. Note that Ci = c†k′σ′ckσ means C†
i = c†kσck′σ′ , hence once we have χ̂

CiC
†
j

(ω)

we can easily obtain from it χ̂
C†

i C
†
j

(ω) and the other response functions in Eqn. 13.190, simply

by permuting the wavevector and spin labels.
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13.6.1 Case I and case II probes

The last remaining piece in the derivation is to note that, for virtually all cases of interest,

σσ′B(−k′ − σ′ | − k − σ) = η B(kσ | k′σ′) , (13.205)

whereB(kσ | k′σ′) is the transition matrix element in the original fermionic (i.e. ‘pre-Bogoliubov’)
representation, from Eqn. 13.185, and where η = +1 (case I) or η = −1 (case II). The eigenvalue
η tells us how the perturbation Hamiltonian transforms under the combined operations of time
reversal and particle-hole transformation. The action of time reversal is

T | k σ 〉 = σ | − k − σ 〉 ⇒ c†kσ → σ c†−k−σ (13.206)

The particle-hole transformation sends c†kσ → ckσ . Thus, under the combined operation,

∑

k,σ

∑

k′,σ′

B(kσ | k′σ′) c†kσ ck′σ′ → −
∑

k,σ

∑

k′,σ′

σσ′B(−k
′ − σ′ | − k − σ) c†kσ ck′σ′ + const.

→ −η
∑

k,σ

∑

k′,σ′

B(kσ | k′σ′) c†kσ ck′σ′ + const. .
(13.207)

If we can write B(kσ | k′σ′) = Bσσ′(ξk, ξk′), then, further assuming that our perturbation corre-
sponds to a definite η , we have that the power dissipated is

P = 1
2
g2(µ)

∑

σ,σ′

∞∫

−∞

dω ω

∞∫

−∞

dξ

∞∫

−∞

dξ′
∣∣Bσσ′(ξ, ξ

′;ω)
∣∣2× (13.208)

{(
uu′ − ηvv′

)2
(f − f ′)

[
δ(~ω + E − E ′) + δ(~ω + E ′ − E)

]

+ 1
2
(uv′ + ηvu′)2 (1− f − f ′)

[
δ(~ω − E − E ′)− δ(~ω + E + E ′)

]}
.

The coherence factors entering the above expression are

1
2
(uu′ − ηvv′)2 =

1

2

(√
E + ξ

2E

√
E ′ + ξ′

2E ′
− η

√
E − ξ

2E

√
E ′ − ξ′

2E ′

)2
=
EE ′ + ξξ′ − η∆2

2EE ′

1
2
(uv′ + ηvu′)2 =

1

2

(√
E + ξ

2E

√
E ′ − ξ′

2E ′
+ η

√
E − ξ

2E

√
E ′ + ξ′

2E ′

)2
=
EE ′ − ξξ′ + η∆2

2EE ′
.

(13.209)

Integrating over ξ and ξ′ kills the ξξ′ terms, and we define the coherence factors

F (E,E ′,∆) ≡ EE ′ − η∆2

2EE ′
, F̃ (E,E ′,∆) ≡ EE ′ + η∆2

2EE ′
= 1− F . (13.210)
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case ~ω ≪ 2∆ ~ω ≫ 2∆ ~ω ≈ 2∆ ~ω ≫ 2∆

I (η = +1) F ≈ 0 F ≈ 1
2

F̃ ≈ 1 F̃ ≈ 1
2

II (η = −1) F ≈ 1 F ≈ 1
2

F̃ ≈ 0 F̃ ≈ 1
2

Table 13.1: Frequency dependence of the BCS coherence factors F (E,E+~ω,∆) and F̃ (E, ~ω−
E,∆) for E ≈ ∆.

The behavior of F (E,E ′,∆) is summarized in Tab. 13.1. If we approximate Bσσ′(ξ, ξ
′;ω) ≈

Bσσ′(0, 0 ;ω), and we define |B(ω)|2 =
∑

σ,σ′

∣∣Bσσ′(0, 0 ;ω)
∣∣2, then we have

P =

∞∫

−∞

dω |B(ω)|2 P(ω) , (13.211)

where

P(ω) ≡ ω

∞∫

∆

dE

∞∫

∆

dE ′ ñ
S
(E) ñ

S
(E ′)

{
F (E,E ′,∆) (f − f ′)

[
δ(~ω + E − E ′) + δ(~ω + E ′ − E)

]

+ F̃ (E,E ′,∆) (1− f − f ′)
[
δ(~ω − E −E ′)− δ(~ω + E + E ′)

]}
, (13.212)

with

ñ
S
(E) =

g(µ) |E|√
E2 −∆2

Θ(E2 −∆2) , (13.213)

which is the superconducting density of states from Eqn. 13.76. Note that the coherence factor
for quasiparticle scattering is F , while that for quasiparticle pair creation or annihilation is

F̃ = 1− F .

13.6.2 Electromagnetic absorption

The interaction of light and matter is given in Eqn. 13.187. We have

B(kσ | k′σ′) =
e~

2mc
(k + k′) ·Ak−k′ δσσ′ , (13.214)

from which we see

σσ′B(−k′ − σ′ | − k − σ) = −B(kσ | k′σ′) , (13.215)
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Figure 13.15: Left: real (σ1) and imaginary (σ2) parts of the conductivity of a superconductor,
normalized by the metallic value of σ1 just above Tc. From J. R. Schrieffer, Theory of Supercon-
ductivity. Right: ratio of PS(ω)/PN(ω) for case I (blue) and case II (red) probes.

hence we have η = −1 , i.e. case II. Let’s set T = 0, so f = f ′ = 0. We see from Eqn. 13.212 that
P(ω) = 0 for ω < 2∆. We then have

P(ω) = 1
2
g2(µ)

~ω−∆∫

∆

dE
E(~ω −E)−∆2

√
(E2 −∆2)

(
(~ω − E)2 −∆2

) . (13.216)

If we set ∆ = 0, we obtain P
N
(ω) = 1

2
ω2. The ratio between superconducting and normal values

is

σ1,S(ω)

σ1,N(ω)
=

P
S
(ω)

P
N
(ω)

=
1

ω

~ω−∆∫

∆

dE
E(~ω − E)−∆2

√
(E2 −∆2)

(
(~ω −E)2 −∆2

) , (13.217)

where σ1(ω) is the real (dissipative) part of the conductivity. The result can be obtained in
closed form in terms of elliptic integrals15, and is

σ1,S(ω)

σ1,N(ω)
=

(
1 +

1

x

)
E

(
1− x

1 + x

)
− 2

x
K

(
1− x

1 + x

)
, (13.218)

where x = ~ω/2∆. The imaginary part σ2,S(ω) may then be obtained by Kramers-Kronig trans-
form, and is

σ2,S(ω)

σ1,N(ω)
=

1

2

(
1 +

1

x

)
E

(
2
√
x

1 + x

)
− 1

2

(
1− 1

x

)
K

(
2
√
x

1 + x

)
. (13.219)

15See D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).



13.6. GENERAL THEORY OF BCS LINEAR RESPONSE 47

The conductivity sum rule,
∞∫

0

dω σ1(ω) =
πne2

2m
, (13.220)

is satisfied in translation-invariant systems16. In a superconductor, when the gap opens, the
spectral weight in the region ω ∈ (0, 2∆) for case I probes shifts to the ω > 2∆ region. One
finds limω→2∆+ P

S
(ω)/P

N
(ω) = 1

2
π. Case II probes, however, lose spectral weight in the ω > 2∆

region in addition to developing a spectral gap. The missing spectral weight emerges as a delta
function peak at zero frequency. The London equation j = −(c/4πλ2

L
)A gives

−iω σ(ω)E(ω) = −iω j(ω) = − c2

4πλ2
L

E(ω) , (13.221)

which says

σ(ω) =
c2

4πλ2
L

i

ω
+Qδ(ω) , (13.222)

where Q is as yet unknown17. We can determine the value of Q via Kramers-Kronig, viz.

σ2(ω) = −P

∞∫

−∞

dν

π

σ1(ν)

ν − ω
, (13.223)

where P denotes principal part. Thus,

c2

4πλ2
L
ω

= −Q
∞∫

−∞

dν

π

δ(ν)

ν − ω
=
Q

π
⇒ Q =

c2

4λ
L

. (13.224)

Thus, the full London σ(ω) = σ1(ω) + iσ2(ω) may be written as

σ(ω) = lim
ǫ→0+

c2

4λ
L

1

ǫ− iπω
=

c2

4λ
L

{
δ(ω) +

i

πω

}
. (13.225)

Note that the London form for σ1(ω) includes only the delta-function and none of the structure
due to thermally excited quasiparticles (ω < 2∆) or pair-breaking (ω > 2∆). Nota bene: while
the real part of the conductivity σ1(ω) includes a δ(ω) piece which is finite below 2∆, because
it lies at zero frequency, it does not result in any energy dissipation. It is also important to note
that the electrodynamic response in London theory is purely local. The actual electromagnetic
response kernel Kµν(q, ω) computed using BCS theory is q-dependent, even at ω = 0. This
says that a magnetic field B(x) will induce screening currents at positions x′ which are not too

16Neglecting interband transitions, the conductivity sum rule is satisfied under replacement of the electron mass
m by the band mass m∗.

17Note that ω δ(ω) = 0 when multiplied by any nonsingular function in an integrand.



48 CHAPTER 13. APPLICATIONS OF BCS THEORY

distant from x. The relevant length scale here turns out to be the coherence length ξ0 = ~v
F
/π∆0

(at zero temperature).

At finite temperature, σ1(ω, T ) exhibits a Hebel-Slichter peak, also known as the coherence peak.
Examples from two presumably non-s-wave superconductors are shown in Fig. 13.16.

Impurities and translational invariance

Observant students may notice that our derivation of σ(ω) makes no sense. The reason is that
B(kσ | k′σ′) ∝ (k + k′) · Ak−k′ , which is not of the form Bσσ′(ξk, ξk′). For an electromagnetic
field of frequency ω, the wavevector q = ω/c may be taken to be q → 0, since the wavelength
of light in the relevant range (optical frequencies and below) is enormous on the scale of the
Fermi wavelength of electrons in the metallic phase. We then have that k = k′+q, in which case
the coherence factor ukvk′ − vkuk′ vanishes as q → 0 and σ1(ω) vanishes as well! This is because
in the absence of translational symmetry breaking due to impurities, the current operator j

commutes with the Hamiltonian, hence matrix elements of the perturbation j ·A cannot cause
any electronic transitions, and therefore there can be no dissipation. But this is not quite right,
because the crystalline potential itself breaks translational invariance. What is true is this: with
no disorder, the dissipative conductivity σ1(ω) vanishes on frequency scales below those corresponding
to interband transitions. Of course, this is also true in the metallic phase as well.

As shown by Mattis and Bardeen, if we relax the condition of momentum conservation, which
is appropriate in the presence of impurities which break translational invariance, then we basi-
cally arrive back at the condition B(kσ | k′σ′) ≈ Bσσ′(ξk, ξk′). One might well wonder whether
we should be classifying perturbation operators by the η parity in the presence of impurities,
but provided ∆τ ≪ ~, the Mattis-Bardeen result, which we have derived above, is correct.

13.7 Electromagnetic Response of Superconductors

Here we follow chapter 8 of Schrieffer, Theory of Superconductivity. In chapter 10 of the lecture
notes, we derived the linear response result (Eqn. 10.200)

〈
jµ(x, t)

〉
= − c

4π

∫
d3x′
∫
dt′ Kµν(x, t x′, t′)Aν(x′, t′) , (13.226)

where j(x, t) is the electrical current density, which is a sum of paramagnetic and diamagnetic
contributions, viz.

〈
jpµ(x, t)

〉
=

i

~c

∫
d3x′
∫
dt′
〈[
jpµ(x, t), j

p
ν (x

′, t′)
]〉

Θ(t− t′)Aν(x′, t′)

〈
jdµ(x, t)

〉
= − e

mc2
〈
jp0 (x, t)

〉
Aµ(x, t) (1− δµ0) ,

(13.227)
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Figure 13.16: Real part of the conductivity σ1(ω, T ) in CeCoIn5 (left; Tc = 2.25K) and in
YBa2Cu3O6.993 (right; Tc = 89K), each showing a coherence peak versus temperature over a
range of low frequencies. Inset at right shows predictions for s-wave BCS superconductors.
Both these materials are believed to involve a more exotic pairing structure. From C. J. S. Trun-
cik et al., Nature Comm. 4, 2477 (2013).

with jp0 (x) = ce n(x). We then conclude18

Kµν(xt;x
′t′) =

4π

i~c2

〈[
jpµ(x, t), j

p
ν (x

′, t′)
]〉

Θ(t− t′)

+
4πe

mc3
〈
jp0 (x, t)

〉
δ(x− x′) δ(t− t′) δµν (1− δµ0) .

(13.228)

In Fourier space, we may write

Kµν(q, t) =

Kp
µν(q,t)︷ ︸︸ ︷

4π

i~c2V

〈[
jpµ(q, t), j

p
ν (−q, 0)

]〉
Θ(t) +

Kd
µν(q,t)︷ ︸︸ ︷

4πne2

mc2
δ(t) δµν (1− δµ0) , (13.229)

where the paramagnetic current operator is

jp0 (q) = ce
∑

k,σ

c†kσ ck+q σ , jp(q) = −e~
m

∑

k,σ

(
k + 1

2
q
)
c†kσ ck+q σ . (13.230)

13.7.1 Computation of the electromagnetic response kernel

The calculation of the electromagnetic response kernel Kµν(q, ω) is tedious, but it yields all we
need to know about the electromagnetic response of superconductors. For example, if we work

18We use a Minkowski metric gµν = gµν = diag(−,+,+,+) to raise and lower indices.
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in a gauge where A0 = 0, we have E(ω) = iωA(ω)/c and hence the conductivity tensor is

σij(q, ω) =
ic2

4πω
Kij(q, ω) , (13.231)

where i and j are spatial indices. Using the results of §13.6, the paramagnetic response kernel
at ω = 0 is

Kp
ij(q, ω = 0) = −8π~2e2

m2c2

∫
d3k

(2π)3
(
ki +

1
2
qi
)(
kj +

1
2
qj
)
L(k, q) , (13.232)

where

L(k, q) =

(
EkEk+q − ξkξk+q −∆k∆k+q

2EkEk+q

)(
1− f(Ek)− f(Ek+q)

Ek + Ek+q + iǫ

)

+

(
EkEk+q + ξkξk+q +∆k∆k+q

2EkEk+q

)(
f(Ek+q)− f(Ek)

Ek −Ek+q + iǫ

)
.

(13.233)

At T = 0, we have f(Ek) = f(Ek+q) = 0, and only the first term contributes. As q → 0, we have
L(k, q → 0) = 0 because the coherence factor vanishes while the energy denominator remains
finite. Thus, only the diamagnetic response remains, and at T = 0 we therefore have

lim
q→0

Kij(q, 0) =
δij
λ2

L
(0)

, (13.234)

where λL(0) =
√
mc2/4πne2 is London’s penetration depth. According to §10.6.5, this should

be purely transverse, but it is not – a defect of our mean field calculation. This can be repaired,
but for our purposes it suffices to take the transverse part, i.e.

lim
q→0

Kij(q, 0) =
δij − q̂i q̂j
λ2

L
(0)

. (13.235)

Thus, as long as λ
L
(0) is finite, the ω → 0 conductivity diverges.

At finite temperature, we have

lim
q→0

L(k, q) = − ∂f

∂E

∣∣∣∣
E=E

k

=
1

k
B
T
f(Ek)

[
1− f(Ek)

]
, (13.236)

hence

lim
q→0

Kp
ij(q, ω = 0) = − 8π~2e2

m2c2k
B
T

∫
d3k

(2π)3
ki kj

eEk
/k

B
T

(
eEk

/k
B
T + 1

)2 = −nn(T )

n

1

λ2
L
(0)

δij , (13.237)

were nn(T ) is the number density of normal electrons,

nn(T ) =
~
2

3π2m

∞∫

0

dk k4
(
− ∂f

∂E

)

E=E
k

. (13.238)
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Expanding about k = kF, where −∂f/∂E is sharply peaked at low temperatures, we find

nn(T ) =
~
2

3m
· 2
∫

d3k

(2π)3
k2
(
− ∂f

∂E

)

=
~
2k2

F

3m
g(ε

F
) · 2

∞∫

0

dξ

(
− ∂f

∂E

)
= 2n

∞∫

0

dξ

(
− ∂f

∂E

)
,

(13.239)

which agrees precisely with what we found in Eqn. 3.136. Note that when the gap vanishes at
Tc, the integral yields 1

2
, and thus nn(Tc) = n, as expected.

Still, Eqn. 13.237 is not fully correct, due to the failure of the mean field theory to respect gauge
invariance. The correct paramagnetic response kernel in this limit is given by

Kp
ij(q → 0, ω = 0, T ) = −nn(T )

n

1

λ2
L
(0)

δij −
ns(T )

n

1

λ2
L
(0)

q̂i q̂j (13.240)

while Kd
ij(q, ω, T ) = δij/λ

2
L
(0). Here, ns(T ) = n − nn(T ) is the density of condensed (supercon-

ducting) electrons. Thus, the spatial part of the response tensor is

Kij(q → 0, ω = 0, T ) =
ns(T )

n

1

λ2
L
(0)

(δij − q̂i q̂j) ≡
1

λ2
L
(T )

(δij − q̂iq̂j) , (13.241)

which is properly transverse.

There is a slick argument, due to Landau, which yields this result. Suppose a superflow is
established at some velocity v. In steady state, any normal current will be damped out, and
the electrical current will be j = −ensv. Now hop on a frame moving with the supercurrent.
The superflow in the moving frame is stationary, so the current is due to normal electrons
(quasiparticles), and j ′ = −enn(−v) = +ennv. That is, the normal particles which were at rest
in the lab frame move with velocity −v in the frame of the superflow, which we denote with a
prime. The quasiparticle distribution in this primed frame is

f ′
kσ =

1

eβ(Ek
+~v·k) + 1

, (13.242)

since, for a Galilean-invariant system, which we are assuming, the energy is

E ′ = E + v · P + 1
2
Mv2

=
∑

k,σ

(
Ek + ~k · v

)
nkσ +

1
2
Mv2 . (13.243)

Expanding now in v ,

j
′ = − e~

mV

∑

k,σ

f ′
kσ k = − e~

mV

∑

k,σ

k

{
f(Ek) + ~k · v ∂f(E)

∂E

∣∣∣∣
E=E

k

+ . . .

}

=
2~2ev

3m

∫
d3k

(2π)3
k2
(
− ∂f

∂E

)

E=E
k

=
~
2ev

3π2m

∞∫

0

dk k4
(
− ∂f

∂E

)

E=E
k

= ennv ,

(13.244)
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yielding the exact same expression for nn(T ). So we conclude that λ2
L
(T ) = mc2/4πns(T )e

2,
with ns(T = 0) = n and ns(T > Tc) = 0. The difference ns(0)− ns(T ) is exponentially small in
∆0/kB

T for small T .

Microwave absorption measurements usually focus on the quantity λ
L
(T ) − λ

L
(0). A piece of

superconductor effectively changes the volume – and hence the resonant frequency – of the
cavity in which it is placed. Measuring the cavity resonance frequency shift ∆ωres as a function
of temperature allows for a determination of the difference ∆λ

L
(T ) ∝ ∆ωres(T ).

Note that anything but an exponential dependence of ∆ lnλ
L

on 1/T indicates that there are
low-lying quasiparticle excitations. The superconducting density of states is then replaced by

gs(E) = gn

∫
dk̂

4π

E√
E2 −∆2(k̂)

Θ
(
E2 −∆2(k̂)

)
, (13.245)

where the gap ∆(k̂) depends on direction in k-space. If g(E) ∝ Eα as E → 0, then

nn(T ) ∝
∞∫

0

dE gs(E)

(
− ∂f

∂E

)
∝ T α , (13.246)

in contrast to the exponential exp(−∆0/kB
T ) dependence for the s-wave (full gap) case. For

example, if
∆(k̂) = ∆0 sinnθ einϕ ∝ ∆0 Ynn(θ, ϕ) , (13.247)

then we find gs(E) ∝ E2/n. For n = 2 we would then predict a linear dependence of ∆ lnλ
L
(T )

on T at low temperatures. Of course it is also possible to have line nodes of the gap function,
e.g. ∆(k̂) = ∆0 (3 cos

2 θ − 1) ∝ ∆0 Y20(θ, ϕ).

EXERCISE: Compute the energy dependence of gs(E) when the gap function has line nodes.

13.7.2 Finite q response and the true penetration depth

Let us continue to keep ω = 0 and write

Kij(q, ω = 0, T ) = K(q, T ) (δij − q̂i q̂j) . (13.248)

For qξ0 ≪ 1, where ξ0 ≡ ~vF/π∆0 is the superconducting coherence length, one finds K(q, T ) =
λ−2

L
(T ), as we obtained above. In the limit qξ0 ≫ 1, Khalatnikov and Abrikosov obtained19

K(q, T ) =
3π

4λ2
L

∆(T )

∆0

1

qξ0
tanh

(
∆(T )

2k
B
T

)
(13.249)

19I. M. Khalatnikov and A. A. Abrikosov, Adv. Phys. 8, 45 (1959).
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Note that this has the same q−1 tail as Pippard’s kernel discussed in §11.3.2. The generalized
penetration depth is defined to be20

λ(T ) ≡ 1

π

∞∫

−∞

dq
1

q2 +K(q)
, (13.250)

from which one obtains21

λ(T )

λ0
=

[
∆0

∆(T )
ctnh

(
∆(T )

2k
B
T

)]1/2
, (13.251)

with

λ0 =
8 · 31/6

9 · (2π)1/3
[
ξ0 λ

2
L
(0)
]1/3

. (13.252)

20See the discussion in §49 of Fetter and Walecka.
21See Fetter and Walecka, §52.
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