PHYSICS 140B : STATISTICAL PHYSICS
HW ASSIGNMENT #1 SOLUTIONS

(1) For the Dieterici equation of state,

p(V = Nb) = Nk, T e-No/VEsT
find the virial coefficients By(T") and B,(T).
Solution :

We first write the equation of state as p = p(n,T) where n = N/V:

Next, we expand in powers of the density n:
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where 5 = 1/k,T. We can now read off the virial coefficients:
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(2) Consider a gas of particles with dispersion e(k) = ¢, |k/|?/2, where ¢ is an energy scale
and / is a length scale. Find the density of states g(¢) in d = 2 and d = 3 dimensions.

Solution :

(a) For e(k) = ¢, |k¢|* we have
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Thus, for a = %,
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(3) For the dispersion (k) = A |k|* obtain expressions for the second virial coefficient
B,(T') for the Bose-Einstein and Fermi-Dirac cases. Assume d = 3 dimensions.

Solution :

From §5.3 off the lecture notes, we have

n(T,2)=3 ;1) ,  pT2)=kTY j'CT)2
j=1 j=1
whence
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After obtaining the density of states,
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we find that the C;(T') are given by
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has dimensions of volume. Thus,
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(4) A gas of quantum particles with photon statistics in d = 3 dimensions has dispersion
e(k) = Al|k|?>.

(a) Find the single particle density of states per unit volume g(¢).

(b) Repeat the arguments of §5.5.2 in the lecture notes for this dispersion.

(c) Assuming our known values for the surface temperature of the sun, the radius of the
earth-sun orbit, and the radius of the earth, what would you expect the surface tem-
perature of the earth to be if the sun radiated particles with this dispersion instead of
photons? (Hint: study §5.5.5 of the lecture notes.)



Solution :

(a) The general expression for g(¢) is obtained by setting
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where g is the internal degeneracy and, for e(k) = Ak®, we have de/dk = aAk*"! and

thus
g, ke 1 g, 4,

9E) = i oA ~ @ aAls
Withg=1,a = %,andd: 3 we have

€
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with e > 0.
(b) Scaling volume by ) scales the lengths by A\!'/3, the quantized wavevectors by A\~1/3,
and the energy eigenvalues by \!/2, since ¢ oc k%/2. Thus,
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(c) See §5.5.5 of the Lecture Notes. Assume a dispersion of the form (k) for the (non-
conserved) bosons. Then the energy current incident on a differential area dA of surface
normal to 2 is
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Now let us assume a power law dispersion ¢(k) = Ak“®. Changing variables to t =
Ak® kT, we find
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One can check that for g = 2, A = fic, and o = 1 that this result reduces to Stefan’s Law.

c=(2+2)T(2+2)

Equating the power incident on the earth to that radiated by the earth,
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Plugging in the appropriate constants and setting o = 2, we obtain 7, = 152 K. Brrr!
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which yields




