PHYSICS 140B : STATISTICAL PHYSICS
HW ASSIGNMENT #2 SOLUTIONS

(1) Turkey typically cooks at a temperature of 350° F. Calculate the total electromagnetic
energy inside an over of volume V' = 1.0m? at this temperature. Compare it to the thermal
energy of the air in the oven at the same temperature.

The total electromagnetic energy is
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For air, which is a diatomic ideal gas, we have E = %pV. What do we take for p? If we
assume that oven door is closed at an initial temperature of 63° F which is 300 K, then with
a final temperature of 350° F = 450 K, we have an increase in the absolute temperature by
50%, hence a corresponding pressure increase of 50%. So we set p = 2 atm and we have

E=3.3(1.013 x 10° Pa)(1.0m?) = 3.80 x 10°J ,

which is about ten orders of magnitude larger.

(2) Let L denote the number of single particle energy levels and N the total number of
particles for a given system. Find the number of possible N-particle states (L, N) for
each of the following situations:

(a) Distinguishable particles with L = 3 and N = 3.

0p(3,3) =33 =27.

(b) Bosons with . =3 and N = 3.

Qpr(3,3) = (5) = 10.

(c) Fermions with L = 10 and N = 3.

Qpp(10,3) = (1Y) = 120.

(d) Find a general formula for Q (L, N), Qg (L, N), and Qpp (L, N).
The general results are

Qp(L,N) =1LV | QBE(L,N):<N+]\I;_1> : QFD(L,N):<]I\JZ>

(3) A species of noninteracting quantum particles in d = 2 dimensions has dispersion
(k) = eo|kl|>/?, where ¢ is an energy scale and / a length.



(a) Assuming the particles are S = 0 bosons obeying photon statistics, compute the heat
capacity C,.

The density of states is
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The total energy is
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where A is the system area. Thus,

aE> Ak,
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(b) Assuming the particles are S = 0 bosons, is there an Bose condensation transition? If
yes, compute the condensation temperature 7.(n) as a function of the particle density. If
no, compute the low-temperature behavior of the chemical potential z(n, T').

The following integral may be useful:

Oous_l u >
[T e =T
n=1

e —1
0

where I'(s) is the gamma function and ((s) is the Riemann zeta-function.

The condition for Bose-Einstein condensation is

oo

1 1 4 4 B cC 4/3
n= [deole) < = T @) ()

0
- <L>/
T \ T

(4) Hydrogen (H,) freezes at 14K and boils at 20 K under atmospheric pressure. The den-
sity of liquid hydrogen is 70kg/m3. Hydrogen molecules are bosons. No evidence has
been found for Bose-Einstein condensation of hydrogen. Why not?

Thus,



If we treat the H, molecules as bosons, and we ignore the rotational freedom, which is
appropriate at temperatures below O, = 85.4K, we have

2 2/3
T, = 2 <L3> — 61K
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Thus, the critical temperature for ideal gas Bose-Einstein condensation is significantly be-
low the freezing temperature for H,. The freezing transition into a regular solid preempts
any BEC phenomena.

(5) (Difficult) Consider a three-dimensional Bose gas of particles which have two internal
polarization states, labeled by o = +1. The single particle energies are given by

h2k?
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where A > 0.

(a) Find the density of states per unit volume g(¢).

Let g, (e) be the DOS per unit volume for the case A = 0. Then

Bk k2dk 2/ m V/?
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For finite A, the single particle energies are shifted uniformly by +A for the 0 = +1 states,
hence
9(e) = gole + ) + go(e = A)

(b) Find an implicit expression for the condensation temperature 7,(n, A). When A — oo,
your expression should reduce to the familiar one derived in class.

For Bose statistics, we have in the uncondensed phase,
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= Lig/o (e(MJFA)/kBT) A+ Lis/o (e(u_A)/kBT) A

In the condensed phase, u = —A — O(N 1) is pinned just below the lowest single particle
energy, which occurs for k = 0 and 0 = —1. We then have

n = ng+ ((3/2) A\7® + Lig p (e 22/sT) A3
To find the critical temperature, set n, = 0 and p = —A:

”/\%“C =((3/2) + Lig o (e_m/kBTC)



This is a nonlinear and implicit equation for 7,(n, A). When A = oo, we have

kyT,.(n,00) = 2%712 <C(§/2)>2/3

(c) When A = oo, the condensation temperature should agree with the familiar result for
three-dimensional Bose condensation. Assuming A > k,T,.(n, A = o), find analytically
the leading order difference 67, (n,A) = T, (n,A) — T.(n, A = c0).

For finite A, we still have the implicit nonlinear equation to solve, but in the limit A >
kT, we can expand T (n, A) = T.(n,00)+dT,(n, A). We may thenset T, .(n, A) to T,(n, o)
in the second term of our nonlinear implicit equation, move this term to the LHS, whence
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which is a simple algebraic equation for 7. (n, A). The second term on the RHS is tiny since
A > kT, (n,o00). We then find

)
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and thus the shift in the condensation temperature is
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Note that
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