
PHYSICS 140B : STATISTICAL PHYSICS

HW ASSIGNMENT #3 SOLUTIONS

(1) Consider a two-dimensional gas of fermions which obey the dispersion relation

ε(k) = ε0

(

(k2x + k2y) a
2 + 1

2(k
4
x + k4y) a

4
)

.

Sketch, on the same plot, the Fermi surfaces for ε
F
= 0.1 ε0, ε

F
= ε0, and ε

F
= 10 ε0.

It is convenient to adimensionalize, writing

x ≡ kxa , y ≡ kya , ν ≡ ε

ε0
.

Then the equation for the Fermi surface becomes

x2 + y2 + 1
2x

4 + 1
2y

4 = ν .

In other words, we are interested in the level sets of the function ν(x, y) ≡ x2+y2+ 1
2x

4+ 1
2y

4.
When ν is small, we can ignore the quartic terms, and we have an isotropic dispersion, with
ν = x2 + y2. I.e. we can write x = ν1/2 cos θ and y = ν1/2 sin θ. The quartic terms give a
contribution of order ν4, which is vanishingly small compared with the quadratic term in
the ν → 0 limit. When ν ∼ O(1), the quadratic and quartic terms in the dispersion are of
the same order of magnitude, and the continuous O(2) symmetry, namely the symmetry
under rotation by any angle, is replaced by a discrete symmetry group, which is the group
of the square, known as C4v in group theory parlance. This group has eight elements:

{

I , R , R2 , R3 , σ , σR , σR2 , σR3
}

Here R is the operation of counterclockwise rotation by 90◦, sending (x , y) to (−y , x), and
σ is reflection in the y-axis, which sends (x , y) to (−x , y). One can check that the function
ν(x, y) is invariant under any of these eight operations from C4v.

Explicitly, we can set y = 0 and solve the resulting quadratic equation in x2 to obtain the
maximum value of x, which we call a(ν). One finds

1
2x

4 + x2 − ν = 0 =⇒ a =

√√
1 + 2ν − 1 .

So long as x ∈ {−a, a}, we can solve for y(x):

y(x) = ±
√

√

1 + 2ν − 2x2 − x4 − 1 .

A sketch of the level sets, showing the evolution from an isotropic (i.e. circular) Fermi
surface at small ν, to surfaces with discrete symmetries, is shown in fig. 1.
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Figure 1: Level sets of the function ν(x, y) = x2+y2+ 1
2x

4+ 1
2y

4 for ν = (12n)
4, with positive

integer n.

(2) Using the Sommerfeld expansion, compute the heat capacity for a two-dimensional
electron gas, to lowest nontrivial order in the temperature T .

In the notes, in section 4.7.6, we obtained the result

E

V
=

ε
F

∫

−∞

dε g(ε) ε +
π2

6
(k

B
T )2 g(ε

F
) +O(T 4) .

This entails a heat capacity of CV,N = V · 1
3π

2k
B
g(εF) · kB

T . The density of states at the

Fermi level, g(ε
F
), is easily found to be

g(ε
F
) =

d

2
· n

εF
.

Thus,

CV,N = N · dπ
2

6
k
B
·
(

k
B
T

εF

)

,

a form which is valid in any spatial dimension d.
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(3) 3He atoms consist of an odd number of fermions (two electrons, two protons, and one
neutron), and hence is itself a fermion. Consider a kilomole of 3He atoms at standard
temperature and pressure (T = 293, K, p = 1 atm).

(a) What is the Fermi temperature of the gas? Assume z ≪ 1 and justify this in part (b).

Assuming the gas is essentially classical (this will be justified shortly), we find the gas
density using the ideal gas law:

n =
p

k
B
T

=
1.013 × 105 Pa

(1.38 × 10−23 J/K)(293K)
= 2.51 × 1025 m−3 .

It is convenient to compute the rest energy of a 3He atom. The mass is 3.016 amu (look it
up on Google), hence

m3 c
2 = 3.016 · (931.5MeV) = 2.809GeV .

For the conversion of amu to MeV/c2, again try googling. We’ll then need ~c = 1973 eV ·Å.
(I remember 1973 because that was the summer I won third prize in an archery contest at
Camp Mahakeno.) Thus,

εF =
(~c)2

2m3 c
2
· (3π2n)2/3 =

(1973 eV · 10−10 m)2

2.809 × 109 eV
· (3π2 · 2.51× 1025 m−3)2/3

= 1.14 × 10−5 eV .

Now with k
B
= 86.2µeV/K, we have T

F
= εF/kB

= 0.13K.

(b) Calculate µ/k
B
T and z = exp(µ/k

B
T ).

Within the GCE, the fugacity is given by z = nλ3
T . The thermal wavelength is

λT =

(

2π~2

mk
B
T

)1/2

=

(

2π · (1973 eV · Å)2
(2.809 × 109 eV) · (86.2 × 10−6 eV/K) · (293K)

)1/2

= 0.587 Å ,

hence
z = nλ3

T = (2.51 × 10−5 Å
−3

) · (0.587 Å)3 = 5.08 × 10−6 .

Thus,
µ

k
B
T

= ln z = −12.2 , z = eµ/kBT = 5.08 × 10−6 .

(c) Find the average occupancy n(ε) of a single particle state with energy 3
2kB

T .

To find the occupancy f(ε − µ), we note ε − µ =
[

3
2 − (−12.2)

]

k
B
T = 13.7 k

B
T , in which

case

n(ε) =
1

e(ε−µ)/k
B
T + 1

=
1

e13.7 + 1
= 1.12 × 10−6 .
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(4) For ideal Fermi gases in d = 1, 2, and 3 dimensions, compute at T = 0 the average

energy per particle E/N in terms of the Fermi energy εF.

The number of particles is

N = gV

∫

ddk

(2π)d
Θ(k

F
− k) = V · gΩd

(2π)d
kd
F

d
,

where g is the internal degeneracy and Ωd is the surface area of a sphere in d dimensions.
The total energy is

E = gV

∫

ddk

(2π)d
~
2k2

2m
Θ(kF − k) = V · gΩd

(2π)d
kd
F

d+ 2
· ~

2k2
F

2m
.

Therefore,
E

N
=

d

d+ 2
ε
F

.

(5) Obtain numerical estimates for the Fermi energy (in eV) and the Fermi temperature (in
Kelvins) for the following systems:

(a) conduction electrons in silver, lead, and aluminum

The Fermi energy for ballistic dispersion is given by

εF =
~
2

2m∗
(3π2n)2/3 ,

where m∗ is the effective mass, which one can assume is the electron mass m = 9.11 ×
10−28 g. The electron density is given by the number of valence electrons of the atom

divided by the volume of the unit cell. A typical unit cell volume is on the order of 30 Å
3
,

and if we assume one valence electron per atom we obtain a Fermi energy of εF = 3.8 eV,
and hence a Fermi temperature of 3.8 eV/(86.2 × 10−6 eV/K) = 4.4 × 104 K. This sets the
overall scale. For detailed numbers, one can examine table 2.1 in Solid State Physics by
Ashcroft and Mermin. One finds

T
F
(Ag) = 6.38× 104 K ; T

F
(Pb) = 11.0× 104 K ; T

F
(Al) = 13.6 × 104 K .

(b) nucleons in a heavy nucleus, such as 200Hg

Nuclear densities are of course much higher. In the literature one finds the relation R ∼
A1/3 r0, where R is the nuclear radius, A is the number of nucleons (i.e. the atomic mass
number), and r0 ≃ 1.2 fm = 1.2 × 10−15 m Under these conditions, the nuclear density is
on the order of n ∼ 3A/4πR3 = 3/4πr30 = 1.4 × 1044 m−3. With the mass of the proton

mp = 938MeV/c2 we find ε
F
∼ 30MeV for the nucleus, corresponding to a temperature of

roughly T
F
∼ 3.5× 1011 K.
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