
PHYSICS 140B : STATISTICAL PHYSICS

HW ASSIGNMENT #6 SOLUTIONS

(1) Consider a spin-2 Ising model with Hamiltonian

Ĥ = −1
2

∑

i,j

Jij Si Sj −H
∑

i

Si

where Si ∈ {−2,−1, 0, 1, 2}. The system is on a simple cubic lattice, with nearest neighbor
coupling J1/kB

= 40K and next-nearest neighbor coupling J2/kB
= 10K.

(a) Find the mean field free energy per site f(θ, h,m), where θ = k
B
T/Ĵ(0), h = H/Ĵ(0),

m = 〈Si〉, and f = F/NĴ(0).

(b) Find the mean field equation for m.

(c) Setting h = 0, find θc. What is Tc?

(d) Find the linear magnetic susceptibility χ(θ) for θ > θc.

(e) For 0 < θc − θ ≪ 1 and h = 0, the magnetization is of the form m = A(θc − θ)1/2. Find
the coefficient A.

(a) he mean field Hamiltonian is

ĤMF = 1
2NĴ(0)m2 − (H + Ĵ(0)m)

∑

i

Si .

Here
Ĵ(0)/k

B
= z1 J1/kB

+ z2 J2/kB
= 360K ,

since z1 = 6 and z2 = 12 on the simple cubic lattice. We’ll need this number in part
(c). Computing the partition function Z

MF
= r exp(−βĤMF), taking the logarithm, and

dividing by NĴ(0), we find

f = 1
2m

2 − θ ln

(

1 + 2 cosh

(

m+ h

θ

)

+ 2 cosh

(

2m+ 2h

θ

)

)

.

(b) The mean field equation is obtained by setting ∂f/∂m = 0. Thus,

m =
2 sinh

(

m+h
θ

)

+ 4 sinh
(

2m+2h
θ

)

1 + 2 cosh
(

m+h
θ

)

+ 2cosh
(

2m+2h
θ

) .

(c) To find θc, we set h = 0 and equate the slopes of the LHS and RHS of the above equation.
This yields

θc = 2 ⇒ Tc = Ĵ(0) θc = 720K .
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(d) To find the zero field susceptibility, we assume that m and h are both small and expand
the RHS of the self-consistency equation, yielding

m(h, θ) =
2h

θ − 2
⇒ χ(θ) =

2

θ − 2

(e) When θ < θc, we need to expand the RHS of the self-consistency equation to order m3.

Equivalently, we can work from f , and using cosh x = 1 + x2

2 + x4

24 + . . . , we have

f = 1
2m

2 − θ ln

(

5 +
m2

θ2
+

m4

12θ4
+ . . . +

4m2

θ2
+

4m4

3θ4
+ . . .

)

= −θ ln 5 + 1
2m

2 − θ ln

(

1 +
m2

θ2
+

17m4

60 θ4
+ . . .

)

= −θ ln 5 +
θ − 2

2θ
m2 +

13m4

60 θ3
+ . . . ,

since ln(1 + x) = x− 1
2x

2 + 1
3x

3 − . . . . We can directly differentiate this with respect to m2

and obtain

m2 = 15
13 θ

2 (2− θ) ≃ 60
13 (2− θ) ⇒ A = 2

√

15
13 .

In deriving the above result we have assumed θ ≈ θc = 2 and worked only to lowest order
in the difference θc − θ.

(2) Consider an Ising model on a square lattice with Hamiltonian

Ĥ = −J
∑

i∈A

∑

j∈B

′

Si σj ,

where the sum is over all nearest-neighbor pairs, such that i is on the A sublattice and j is
on the B sublattice (this is the meaning of the prime on the j sum), as depicted in Fig. 1.
The A sublattice spins take values Si ∈ {−1, 0,+1}, while the B sublattice spins take values
σj ∈ {−1,+1}.

Figure 1: The square lattice and its A and B sublattices.

(a) Make the mean field assumptions 〈Si〉 = m
A

for i ∈ A and 〈σj〉 = m
B

for j ∈ B. Find the
mean field free energy F (T,N,m

A
,m

B
). Adimensionalize as usual, writing θ ≡ k

B
T/zJ

(with z = 4 for the square lattice) and f = F/zJN . Then write f(θ,m
A
,m

B
).
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(b) Write down the two mean field equations (one for m
A

and one for m
B

).

(c) Expand the free energy f(θ,m
A
,m

B
) up to fourth order in the order parameters m

A
and

m
B

. You may find the following useful:

ln
(

2 cosh x
)

= ln 2 +
x2

2
−

x4

12
+O(x6) , ln

(

1 + 2 cosh x
)

= ln 3 +
x2

3
−

x4

36
+O(x6) .

(d) Show that the part of f(θ,m
A
,m

B
) which is quadratic in m

A
and m

B
may be written as

a quadratic form, i.e.

f(θ,m
A
,m

B
) = f0 +

1
2

(

m
A

m
B

)

(

M11 M12

M21 M22

)(

m
A

m
B

)

+O
(

m4
A
,m4

B

)

,

where the matrix M is symmetric, with components Maa′ which depend on θ. The critical
temperature θc is identified as the largest value of θ for which detM(θ) = 0. Find θc and
explain why this is the correct protocol to determine it.

(a) Writing Si = m
A
+ δSi and σj = m

B
+ δσj and dropping the terms proportional to

δSi δσj , which are quadratic in fluctuations, one obtains the mean field Hamiltonian

Ĥ
MF

= 1
2NzJm

A
m

B
− zJm

B

∑

i∈A

Si − zJm
A

∑

j∈B

σj ,

with z = 4 for the square lattice. Thus, the internal field on each A site is Hint,A = zJm
B

,
and the internal field on each B site is Hint,B = zJm

A
. The mean field free energy, F

MF
=

−k
B
T lnZ

MF
, is then

F
MF

= 1
2NzJm

A
m

B
− 1

2Nk
B
T ln

[

1+2 cosh(zJm
B
/k

B
T )
]

− 1
2Nk

B
T ln

[

2 cosh(zJm
A
/k

B
T )
]

.

Adimensionalizing,

f(θ,m
A
,m

B
) = 1

2mA
m

B
− 1

2θ ln
[

1 + 2 cosh(m
B
/θ)
]

− 1
2θ ln

[

2 cosh(m
A
/θ)
]

.

(b) The mean field equations are obtained from ∂f/∂m
A
= 0 and ∂f/∂m

B
= 0. Thus,

m
A
=

2 sinh(m
B
/θ)

1 + 2 cosh(m
B
/θ)

m
B
= tanh(m

A
/θ) .

(c) We have

f(θ,m
A
,m

B
) = f0 +

1
2mA

m
B
−

m2
A

4 θ
−

m2
B

6 θ
+

m4
A

24 θ3
+

m4
B

72 θ3
+ . . . ,
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with f0 = −1
2θ ln 6.

(d) From the answer to part (c), we read off

M(θ) =





− 1
2θ

1
2

1
2 − 1

3θ



 ,

from which we obtain detM = 1
6θ

−2 − 1
4 . Setting detM = 0 we obtain θc =

√

2
3 .

(3) Consider the ferromagnetic XY model, with

Ĥ = −
∑

i<j

Jij cos(φi − φj)−H
∑

i

cosφi .

Defining zi ≡ exp(iφi), write zi = 〈zi〉+ δzi with

〈zi〉 = meiα .

(a) Assuming H > 0, what should you take for α?

(b) Making this choice for α, find the mean field free energy using the ‘neglect of fluctua-
tions’ method. Hint : Note that cos(φi − φj) = Re (ziz

∗

j ).

(c) Find the self-consistency equation for m.

(d) Find Tc.

(e) Find the mean field critical behavior for m(T,H = 0), m(T = Tc,H), CV (T,H = 0),
and χ(T,H = 0), and identify the critical exponents α, β, γ, and δ.

(a) To minimize the free energy we clearly must take α = 0 so that the mean field is aligned
with the external field.

(b) Writing zi = m+ δzi we have

H = −1
2

∑

i,j

Jij Re
(

m2 +mδzi +mδzj + δzi δzj
)

−H
∑

i

Re (zi)

= 1
2NĴ(0)m2 −

(

Ĵ(0)m +H
)

∑

i

cosφi +O
(

δzi δzj
)

The mean field free energy is then

F = 1
2NĴ(0)m2 −Nk

B
T ln





2π
∫

0

dφ

2π
e(Ĵ(0)m+H) cos φ/k

B
T





= 1
2NĴ(0)m2 −Nk

B
T ln I0

(

Ĵ(0)m +H

k
B
T

)

,
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where Iα(x) is the modified Bessel function of order α.

(c) Differentiating, we find

∂F

∂m
= 0 =⇒ m =

I1

(

Ĵ(0)m+H
k
B
T

)

I0

(

Ĵ(0)m+H
k
B
T

) ,

which is equivalent to eqn. 6.119 of the notes, which was obtained using the variational
density matrix method.

(d) It is convenient to define f = F/NĴ(0), θ = k
B
T/Ĵ(0), and h = H/Ĵ(0). Then

f(θ, h) = 1
2m

2 − θ ln I0

(

m+ h

θ

)

.

We now expand in powers of m and h, keeping terms only to first order in the field h. This
yields

f =

(

1

2
−

1

4θ

)

m2 +
m4

64θ3
−

hm

2 θ
+ . . . ,

from which we read off θc =
1
2 , i.e. Tc = Ĵ(0)/2k

B
.

(e) The above free energy is of the standard Landau form for an Ising system, therefore
α = 0, β = 1

2 , γ = 1, and δ = 3. The O(2) symmetry, which cannot be spontaneously
broken in dimensions d ≤ 2, is not reflected in the mean field solution. In d = 2, the O(2)
model does have a finite temperature phase transition, but one which is not associated with a
spontaneous breaking of the symmetry group. The O(2) model in d = 2 undergoes a Kosterlitz-
Thouless transition, which is associated with the unbinding of vortex-antivortex pairs as
T exceeds Tc. The existence of vortex excitations in the O(2) model in d = 2 is a special
feature of the topology of the group.

(4) Consider the free energy

f(θ,m) = f0 +
1
2am

2 + 1
4bm

4 + 1
8dm

8

with d > 0. Note there is an octic term but no sextic term. Derive results corresponding
to those in fig. 7.17 of the lecture notes. Find the equation of the first order line in the
(a/d, b/d) plane. Also identify the region in parameter space where there exist metastable
local minima in the free energy (curve E in fig. 7.17).

Note that

f(m) = f0 +
1
2am

2 + 1
4bm

4 + 1
8dm

8

f ′(m) = am+ bm3 + dm7

f ′′(m) = a+ 3bm2 + 7dm6 .
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Figure 2: Regimes for the octic free energy in problem 5..

To find the first order line, we set f(m) = f0 and f ′(m) = 0 simultaneously. Dividing out
by the root at m = 0 we obtain the simultaneous equations

1
2a+ 1

4bm
2 + 1

8dm
6 = 0

a+ bm2 + dm6 = 0 .

Eliminating the m6 terms, we obtain m2 = 3a/|b| (remember a > 0 and b < 0 for a first
order transition). Inserting this back in either of the above equations yields the relation

a∗ =

√

2|b|3

27d
.

To obtain the condition for the saddle-node bifurcation, where the metastable m 6= 0 local
minima in f(m) first appear, we simultaneously solve f ′(m) = 0 and f ′′(m) = 0, yielding
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the simultaneous equations

a+ bm2 + dm6 = 0

a+ 3bm2 + 7dm6 = 0 .

Again we eliminate the m6 term and solve for m2, obtaining m2 = 3a/2|b|. Inserting this
back into either of the above equations yields the condition for the first order transition,

ac =

√

4|b|3

27d
.

The results are plotted in fig. 2.
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