
PHYSICS 140A : STATISTICAL PHYSICS

HW SOLUTIONS #2

(1) A substance obeys the thermodynamic relation E = aS4/V N2.

(a) Compute the heat capacity CV,N in terms of N , V , and T .

(b) Compute the equation of state relating p, V , N , and T .

(c) Compute the ratio Cϕ,N/CV,N , where Cϕ,N is the heat capacity at constant ϕ and N ,
with ϕ = V 2/T .

Solution :

(a) We have

T =
∂E

∂S

∣

∣

∣

∣

V,N

=
4aS3

V N2
⇒ S =

(

TVN2

4a

)1/3

.

Plugging this into the expression for E(S, V,N), we obtain

E(T, V,N) = 1
4
(4a)−1/3 T 4/3V 1/3N2/3 ,

and hence

CV,N =
∂E

∂T

∣

∣

∣

∣

V,N

= 1
3
(4a)−1/3 T 1/3V 1/3N2/3 .

(b) We have T (S, V,N) and so we must find p(S, V,N) and then eliminate S. Thus,

p = −
∂E

∂V

∣

∣

∣

∣

S,N

=
aS4

V 2N2
= 1

4
(4a)−1/3 T 4/3V −2/3N2/3 .

Cubing this result eliminates the fractional powers, yielding the equation of state

256a p3V 2 = N2T 4 .

Note also that E = pV and CV,N = 4pV/3T .

(d) We have dE = d̄Q− p dV , so

d̄Q = dE + p dV = CV,N dT +

{(

∂E

∂V

)

T,N

+ p

}

dV .

Now we need to compute dV
∣

∣

ϕ,N
. We write

dϕ = −
V 2

T 2
dT +

2V

T
dV ,

hence

dV
∣

∣

ϕ,N
=

V

2T
dT .
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Substituting this into our expression for d̄Q, we have

Cϕ,N = CV,N +

{(

∂E

∂V

)

T,N

+ p

}

V

2T
.

It is now left to us to compute
(

∂E

∂V

)

T,N

= 1
12
(4a)−1/3 T 4/3V −2/3N2/3 = 1

3
p .

We then have

Cϕ,N = CV,N +
2pV

3T
= 3

2
CV,N .

Thus,
Cϕ,N

CV,N

= 3
2

.

(2) A strange material satisfies E(S, V,N) = aS6/V 3N2.

(a) What are the SI dimensions of a?

(b) Find the equation of state relating p, T , and n = N/V .

(c) Find the coefficient of thermal expansion αp = 1
V

(

∂V
∂T

)

p
. Express your answer in

terms of T .

(d) Find the coefficient of isothermal compressibility κT = −
1
V

(

∂V
∂p

)

T
. Express your

answer in terms of p.

Solution :

(a) Since [S] = J/K, we have [a] = K6m9/J5.

(b) We have

T =

(

∂E

∂S

)

V,N

=
6aS5

V 3N2
, p = −

(

∂E

∂V

)

S,N

=
3aS6

V 4N2
.

The combination T 6/p5 eliminates S, and we obtain the equation of state,

192a p5V 2 = N2T 6 .

(c) At constant p and N , we have lnV = 3 ln T + const. Thus, the coefficient of thermal
expansion is

αp =

(

∂ lnV

∂T

)

p,N

=
3

T
.
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(d) At constant T and N , we have lnV = −
5
2
ln p + const. Thus, the isothermal compress-

ibility is

κT = −

(

∂ lnV

∂p

)

T,N

=
5

2p
.

(3) ν moles of the substance in problem 2 execute a Carnot cycle between reservoirs at
temperatures T1 and T2. The top isotherm extends from volume V

A
to V

B
. Find the heat Q

and work W for each leg of the cycle, and compute the cycle efficiency.
Suggestion: It is useful to use §2.6.6 of the Lecture Notes as a template.

Solution :

From the results of problem (2), we have

E = 1
3
pV =

1

3

(

N2V 3T 6

192a

)1/5

.

Thus, under isothermal conditions,

dE
∣

∣

T
=

1

5

(

N2T 6

192a

)1/5 dV

V 2/5
= 1

5
p dV .

Thus, along an isotherm, we have

W
if
=

V
f

∫

V
i

dV p = 5 (E
f
− Ei)

Qif = E
f
− Ei +W

if
= 6 (E

f
− Ei) .

Along an adiabat, we have TV 3 = const. and E/T = const., so

E
B
=

(

V
B

V
A

)3/5

E
A

, E
C
=

T1

T2

(

V
B

V
A

)3/5

E
A

, E
D
=

T1

T2

E
A
,

where AB is an isotherm at T2, BC is an adiabat, CD is an isotherm at T1, and DA is an
adiabat. We now have

W
AB

= 5(E
B
− E

A
) = 5

{

(

V
B

V
A

)3/5

− 1

}

E
A

Q
AB

= 6(E
B
− E

A
) = 6

{

(

V
B

V
A

)3/5

− 1

}

E
A

W
BC

= E
C
−E

B
=

(

1−
T1

T2

)(

V
B

V
A

)3/5

E
A

Q
BC

= 0
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and

W
CD

= 5(E
D
− E

C
) = 5

T1

T2

{

1−

(

V
B

V
A

)3/5
}

E
A

Q
CD

= 6(E
D
− E

C
) = 6

T1

T2

{

1−

(

V
B

V
A

)3/5
}

E
A

W
DA

= E
A
− E

D
=

(

T1

T2

− 1

)

E
A

Q
DA

= 0

Adding up the work along the four legs of the Carnot cycle, we have

W = 6

(

1−
T1

T2

)

{

(

V
B

V
A

)3/5

− 1

}

E
A
,

and the efficiency is

η =
W

Q
AB

= 1−
T1

T2

,

which is the same result as for an ideal gas. Were the efficiency different from that of the
ideal gas Carnot cycle running between the same two reservoirs, one could use one of
the engines to drive the other run as a refrigerator and thereby violate the Second Law
of Thermodynamics, i.e. transferring heat from the cold reservoir to the warm reservoir
during a cycle. The fact that this is impossible requires that the efficiencies are exactly the
same.

(4) An interacting diatomic gas obeys the equation of state

p(v − b) = RT e−a/v ,

where v = N
A
V/N is the molar volume.

(a) Show that E(T, V,N) = 1
2
fNk

B
T , the same as for an ideal gas.

(b) Find the molar specific heat cp as a function of the specific volume v.

Solution :

(a) We know that
(

∂ε

∂v

)

T

= T

(

∂p

∂T

)

v

− p ,

where ε and v are molar energy and molar volume, respectively. For our system, the RHS
of the above equation vanishes, hence ε = ε(T ). In the dilute limit we know the answer,
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and since ε is independent of volume, this is true for arbitrary molar volumes. Thus,
ε(T ) = 1

2
fRT , i.e. E = 1

2
fNk

B
T .

(b) We have

cp = T

(

∂s

∂T

)

p

=

(

∂ε

∂T

)

p

+ p

(

∂v

∂T

)

p

.

The first term on the RHS yields 1
2
fR. To evaluate the second term, we appeal to the

equation of state at constant pressure, which yields, upon taking the differential,

p dv = Re−a/v dT +
RTa

v2
e−a/v dv

=
RT

v − b
e−a/v dv .

Thus,
(

∂v

∂T

)

p

=
(v − b)v2/T

v2 − av + ab

We then have

cp =
1
2
fR+

Rv2 e−a/v

v2 − av + ab
.

Note that cp(v → ∞) = (1
2
f + 1)R, which is the ideal gas value.
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