
PHYSICS 140A : STATISTICAL PHYSICS

HW SOLUTIONS #4

(1) Consider a noninteracting classical gas with Hamiltonian

H =
N
∑

i=1

ε(pi) ,

where ε(p) is the dispersion relation. Define

ξ(T ) = h−d

∫

ddp e−ε(p)/k
B
T .

(a) Find F (T, V,N).

(b) Find G(T, p,N).

(c) Find Ω(T, V, µ).

(d) Show that

βp

∞
∫

0

dV e−βpV Z(T, V,N) = e−G(T,p,N)/k
B
T .

Solution :

(a) We have Z(T, V,N) = (V ξ)N/N !, so

F (T, V,N) = −k
B
T lnZ(T, V,N) = −Nk

B
T ln

(

V

N

)

−Nk
B
T ln ξ(T )−Nk

B
T .

(b) G is obtained from F by Legendre transform: G = F + pV , i.e.

G(T, p,N) = −Nk
B
T ln

(

k
B
T

p

)

−Nk
B
T ln ξ(T ) .

Note that we have used the ideal gas law pV = Nk
B
T here.

(c) Ω is obtained from F by Legendre transform: Ω = F − µN . Another way to obtain Ω
is to use the grand potential Ξ = exp(V ξ(T ) eµ/kBT ), whence

Ω(T, V, µ) = −V k
B
T ξ(T ) eµ/kBT .

(d) We have

Y (T, p,N) = βp

∞
∫

0

dV e−βpV Z(T, V,N) =
ξN (T )

N !
βp

∞
∫

0

dV V N e−βpV =

(

k
B
T ξ(T )

p

)N
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Thus, G(T, p,N) = −Nk
B
T ln

(

k
B
T ξ/p

)

. Note that if we normalize the volume integral
differently and define

Y (T, p,N) =

∞
∫

0

dV

V0

e−βpV Z(T, V,N) =

(

k
B
T

pV0

)

·

(

k
B
T ξ(T )

p

)N

,

we obtain G(T, p,N) = −Nk
B
T ln

(

k
B
T ξ/p

)

− k
B
T ln(k

B
T/pV0), which differs from the

previous result only by an O(N0) term, which is subextensive and hence negligible in the
thermodynamic limit.

(2) A three-dimensional gas of magnetic particles in an external magnetic field H is de-
scribed by the Hamiltonian

H =
∑

i

[

p
2
i

2m
− µ0Hσi

]

,

where σi = ±1 is the spin polarization of particle i and µ0 is the magnetic moment per
particle.

(a) Working in the ordinary canonical ensemble, derive an expression for the magnetiza-
tion of system.

(b) Repeat the calculation for the grand canonical ensemble. Also, find an expression for
the Landau free energy Ω(T, V, µ).

(c) Calculate how much heat will be given off by the system when the magnetic field is
reduced from H to zero at constant volume, constant temperature, and particle number.

Solution :

(a)The partition function trace is now an integral over all coordinates and momenta with
measure dµ as before, plus a sum over all individual spin polarizations. Thus,

Z = Tr e−H/k
B
T =

1

N !

N
∏

i=1

∑

σ
i

∫

d3xi d
3pi

h3
e−p

2

i
/2mk

B
T eµ0

Hσ
i
/k

B
T

=
1

N !
V N λ−3N

T

[

2 cosh(µ0H/k
B
T )

]N
,

where λT = (2π~2/mk
B
T )1/2 is the thermal wavelength. The Helmholtz free energy is

F (T, V,H,N) = −k
B
T lnZ(T, V,H,N)

= −Nk
B
T ln

(

V

Nλ3
T

)

−Nk
B
T ln cosh(µ0H/k

B
T )−Nk

B
T (1 + ln 2) .

The magnetization is then

M(T, V,H,N) = −
∂F

∂H
= Nµ0 tanh(µ0H/k

B
T ) .
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(b) The grand partition function is

Ξ(T, V,H, µ) =

∞
∑

N=0

eµN/k
B
T Z(T, V,N) = exp

(

V λ−3
T · 2 cosh(µ0H/k

B
T ) · eµ/kBT

)

.

Thus,

Ω(T, V,H, µ) = −k
B
T ln Ξ(T, V, µ) = −V k

B
T λ−3

T · 2 cosh(µ0H/k
B
T ) · eµ/kBT .

Then

M(T, V,H, µ) = −
∂Ω

∂H
= 2µ0 · V λ−3

T · sinh(µ0H/k
B
T ) · eµ/kBT .

Note that

N(T, V,H, µ) = −
∂Ω

∂µ
= V λ−3

T · cosh(µ0H/k
B
T ) · eµ/kBT ,

so M = Nµ0 tanh(µ0H/k
B
T ), which agrees with the result from part (a).

(c) Starting with our expression for F (T, V,N) in part (a), we differentiate to find the en-
tropy:

S(T, V,H,N) = −
∂F

∂T
= Nk

B
ln cosh(µ0H/k

B
T )−

Nµ0H

T
tanh(µ0H/k

B
T ) + S(T, V, 0, N) ,

where S(T, V, 0, N) is the entropy at H = 0, which we don’t need to compute for this
problem. The heat absorbed by the system is

Q =

∫

d̄Q = TS(0)− TS(H) = Nk
B
T ln cosh(µ0H/k

B
T ) +Nµ0H tanh(µ0H/k

B
T )

= Nk
B
T
(

x tanhx− ln coshx
)

,

where x = µ0H/k
B
T . Defining f(x) = x tanhx− ln coshx, one has f ′(x) = x sech2x which

is positive for all x > 0. Since f(x) is an even function with f(0) = 0, we conclude f(x) > 0
for x 6= 0. Thus, Q > 0, which means that the system absorbs heat under this process. I.e.
the heat released by the system is (−Q).

(3) A classical three-dimensional gas of noninteracting particles has the Hamiltonian

H =
N
∑

i=1

[

A |pi|
s +B |qi|

t
]

,

where s and t are nonnegative real numbers.

(a) Find the free energy F (T, V,N).

(b) Find the average energy E(T, V,N).
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(c) Find the grand potential Ω(T, V, µ).

Remember the definition of the Gamma function, Γ(z) =
∞
∫

−∞

du uz−1 e−u.

Solution :

(a) Working in the OCE, the partition function is Z = ξNp (T ) ξNq (T )/N !, where

ξp(T ) =
1

h3

∫

d3p exp
(

−Aps/k
B
T
)

ξq(T ) =

∫

d3q exp
(

−B qt/k
B
T
)

.

We focus first on the momentum integral, changing variables to u = Aps/kT . Then

u =
Aps

k
B
T

⇒ p =

(

k
B
T u

A

)1/s

, p2 dp =

(

k
B
T

A

)3/s

· s−1 u(3/s)−1 du ,

and

ξp(T ) =
1

h3

∫

d3p exp
(

−Aps/k
B
T
)

=
4π

h3

(

k
B
T

A

)3/s

·
1

s

∞
∫

−∞

du u(3/s)−1 e−u

=
4π

sh3
Γ(3/s)

(

k
B
T

A

)3/s

,

where we have used z Γ(z) = Γ(z + 1). Mutatis mutandis,

ξq(T ) =

∫

d3q exp
(

−B qt/k
B
T
)

=
4π

t
Γ(3/t)

(

k
B
T

B

)3/t

.

Thus, the free energy is

F (T, V,N) = −k
B
T lnZ = −Nk

B
T ln

(

ξp(T ) ξq(T )

N

)

−Nk
B
T .

(b) The average energy is

E =
∂

∂β
(βF ) =

(

3

s
+

3

t

)

Nk
B
T .

(c) The grand potential is Ω = −k
B
T ln Ξ, and Ξ = exp

(

ξp(T ) ξq(T ) e
µ/k

B
T
)

. Thus,

Ω(T, V,N) = −k
B
T ξp(T ) ξq(T ) e

µ/k
B
T .
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Note that F and Ω are both independent of V , which means that the pressure p vanishes!

(4) A gas of nonrelativistic particles of mass m is held in a container at constant pressure
p and temperature T . It is free to exchange energy with the outside world, but the particle
number N remains fixed. Compute the variance in the system volume, Var(V ), and the
ratio (∆V )rms/〈V 〉. Use the Gibbs ensemble.

Solution

The Gibbs free energy is

G(T, p,N) = −Nk
B
T ln

(

k
B
T

pλ3
T

)

,

where λT = (2π~2/mk
B
T )1/2 is the thermal wavelength. Thus, with

Y = e−G/k
B
T =

∫

dV

V0

e−βpV Z(T, V,N) ,

we have

〈V 〉 = −
1

β

1

Y

∂Y

∂p
=

∂G

∂p
=

Nk
B
T

p

Var(V ) = 〈V 2〉 − 〈V 〉2 =
1

β2

{

1

Y

∂2Y

∂p2
−

(

1

Y

∂Y

∂p

)2
}

= −k
B
T

∂2G

∂p2
= N

(

k
B
T

p

)2

.

Thus, (∆V )
RMS

=
√

Var(V )/〈V 〉 = N−1/2.
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