
PHYSICS 140A : STATISTICAL PHYSICS

HW SOLUTIONS #5

(1) Compute the density of states D(E,V,N) for a three-dimensional gas of particles with

Hamiltonian Ĥ =
∑N

i=1 A |pi|
4, where A is a constant. Find the entropy S(E,V,N), the

Helmholtz free energy F (T, V,N), and the chemical potential µ(T, p).

Solution :

Let’s solve the problem for a general dispersion ε(p) = A|p|α. We can afterwards restrict
to the case d = 3, α = 4. The density of states is

D(E,V,N) =
V N

N !

∫
ddp1
hd

· · ·

∫
ddpN
hd

δ
(
E −Apα1 − . . .−ApαN

)
.

The Laplace transform is

D̂(β, V,N) =
V N

N !

(∫
ddp

hd
e−βApα

)N

=
V N

N !

(
Ωd

hd

∞∫

0

dp pd−1 e−βApα
)N

=
V N

N !

(
Ωd Γ(d/α)

αhdAd/α

)N
β−Nd/α .

Now we inverse transform, recalling

K(E) =
Et−1

Γ(t)
⇐⇒ K̂(β) = β−t .

We then conclude

D(E,V,N) =
V N

N !

(
Ωd Γ(d/α)

αhdAd/α

)N E
Nd
α

−1

Γ(Nd/α)

and

S(E,V,N) = kB lnD(E,V,N)

= NkB ln

(
V

N

)
+

d

α
NkB ln

(
E

N

)
+NkBa0 ,

where a0 is a constant, and we take the thermodynamic limit N → ∞ with V/N and E/N
fixed. From this we obtain the differential relation

dS =
NkB

V
dV +

d

α

NkB

E
dE + s0 dN

=
p

T
dV +

1

T
dE −

µ

T
dN ,
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where s0 is a constant. From the coefficients of dV and dE, we conclude

pV = NkBT

E =
d

α
NkBT .

Note that we have replaced E = d
α NkBT in order to express F in terms of its ’natural

variables’ T , V , and N .

The Helmholtz free energy is

F = E − TS = E −NkBT ln

(
V

N

)
−

d

α
NkBT ln

(
E

N

)
−NkBTa0

=
d

α
NkBT −

d

α
NkBT ln

(
d

α
kBT

)
−NkBT ln

(
V

N

)
−NkBTa0 .

The chemical potential is

µ = T

(
∂F

∂N

)

T,V

= −
d

α
kBT ln

(
d

α
kBT

)
+

d

α
kBT − kBT ln

(
V

N

)
+ (1− a0) kBT

= −
d

α
kBT ln

(
d

α
kBT

)
+

d

α
kBT − kBT ln

(
kBT

p

)
+ (1− a0) kBT .

Suppose we wanted the heat capacities CV and Cp. Setting dN = 0, we have

d̄Q = dE + p dV

=
d

α
NkB dT + p dV

=
d

α
NkB dT + p d

(
NkBT

p

)
.

Thus,

CV =
d̄Q

dT

∣∣∣∣
V

=
d

α
NkB , Cp =

d̄Q

dT

∣∣∣∣
p

=

(
1 +

d

α

)
NkB .

(2) For the system described in problem (1), compute the distribution of speeds f̄(v). Find
the most probable speed, the mean speed, and the RMS speed.

Solution :

Again, we solve for the general case ε(p) = Apα. The momentum distribution is

g(p) = C e−βApα ,
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where C is a normalization constant, defined so that
∫
ddp g(p) = 1. Changing variables to

t ≡ βApα, we find

C =
α (βA)

d
α

Ωd Γ
(
d
α

) .

The velocity v is given by

v =
∂ε

∂p
= αApα−1

p̂ .

Thus, the speed distribution is given by

f̄(v) = C

∫
ddp e−βApα δ

(
v − αApα−1

)
.

Now

δ
(
v − αApα−1

)
=

δ
(
p− (v/αA)1/(α−1)

)

α(α− 1)Apα−2
.

We therefore have

f̄(v) =
C

α(α − 1)A
pd−α+1 e−βApα

∣∣∣∣
p=(v/αA)1/(α−1)

.

We can now calculate

〈vr〉 = C

∫
ddp e−βApα

(
αApα−1

)r
,

and so

‖v‖r = 〈vr〉1/r = αAα−1
(kBT )

1−α−1

(
Γ
(
d−r
α + r

)

Γ
(
d
α

)
)1/α

.

To find the most probable speed, we extremize f̄(v). We obtain

βApα =
d− α+ 1

α
,

which means

v = αA

(
d− α+ 1

αβA

)1−α−1

= (αA)α
−1
(d− α+ 1)1−α−1

(kBT )
1−α−1

.

(3) Consider a gas of classical spin-32 particles, with Hamiltonian

Ĥ =
N∑

i=1

p
2
i

2m
− µ0H

∑

i

Sz
i ,
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where Sz
i ∈

{
− 3

2 ,−
1
2 ,+

1
2 ,+

3
2

}
and H is the external magnetic field. Find the Helmholtz

free energyF (T, V,H,N), the entropyS(T, V,H,N), and the magnetic susceptibilityχ(T,H, n),
where n = N/V is the number density.

Solution :

The partition function is

Z = Tr e−Ĥ/kBT =
1

N !

V N

λdN
T

(
2 cosh(µ0H/2kBT ) + 2 cosh(3µ0H/2kBT )

)N
,

so

F = −NkBT ln

(
V

Nλd
T

)
−NkBT −NkBT ln

(
2 cosh(µ0H/2kBT ) + 2 cosh(3µ0H/2kBT )

)
,

where λT =
√

2π~2/mkBT is the thermal wavelength. The entropy is

S = −

(
∂F

∂T

)

V,N,H

= NkB ln

(
V

Nλd
T

)
+ (12d+ 1)NkB +N ln

(
2 cosh(µ0H/2kBT ) + 2 cosh(3µ0H/2kBT )

)

−
µ0H

2T
·
sinh(µ0H/2kBT ) + 3 sinh(3µ0H/2kBT )

cosh(µ0H/2kBT ) + cosh(3µ0H/2kBT )
.

The magnetization is

M = −

(
∂F

∂H

)

T,V,N

= 1
2Nµ0 ·

sinh(µ0H/2kBT ) + 3 sinh(3µ0H/2kBT )

cosh(µ0H/2kBT ) + cosh(3µ0H/2kBT )
.

The magnetic susceptibility is

χ(T,H, n) =
1

V

(
∂M

∂H

)

T,V,N

=
nµ2

0

4kBT
f(µ0H/2kBT )

where

f(x) =
d

dx

(
sinhx+ 3 sinh(3x)

cosh x+ cosh(3x)

)
.

In the limit H → 0, we have f(0) = 5, so χ = 4nµ2
0/4kBT at high temperatures. This is a

version of Curie’s law.

(4) Consider a system of identical but distinguishable particles, each of which has a non-
degenerate ground state with ε0 = 0, and a g−fold degenerate excited state with energy
ε > 0. Study carefully problems #1 and #2 in the example problems for chapter 4 of the
lecture notes, where this system is treated in the microcanonical and ordinary canonical
ensembles. Here you are invited to work out the results for the grand canonical ensemble.

(a) Find the grand partition function Ξ(T, z) and the grand potential Ω(T, z). Express your
answers in terms of the temperature T and the fugacity z = eµ/kBT .
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(b) Find the entropy S(T, µ).

(c) Find the number of particles, N(T, µ).

(d) Show how, in the thermodynamic limit, the entropy agrees with the results from the
microcanonical and ordinary canonical ensembles.

Solution :

(a) The ordinary canonical partition function is

Z(T,N) =
(
1 + g e−ε/kBT

)N
,

hence the grand partition function is

Ξ(T, z) =

∞∑

N=0

zN Z(T,N) =
1

1− z(1 + g e−ε/kBT )
,

with z = exp(µ/kBT ) the fugacity. The grand potential is

Ω(T, z) = −kBT lnΞ = kBT ln
[
1− z

(
1 + g e−ε/kBT

)]
.

(b) The entropy is S = −(∂Ω/∂T )µ so we must allow z to vary with T . Differentiating, we
obtain

S(T, µ) = −

(
∂Ω

∂T

)

z

−

(
∂Ω

∂z

)

T

(
∂z

∂T

)

µ

= −kB ln
(
1− z

(
1 + g e−ε/kBT

))
−

µ

T
·

z (1 + g e−ε/kBT )

1− z(1 + g e−ε/kBT )
+

ε

T
·

gz e−ε/kBT

1− z(1 + g e−ε/kBT )

= −kB ln
(
1−

(
1 + g e−ε/kBT

)
eµ/kBT

)
+

1

T
·
g ε e−ε/kBT − µ (1 + g e−ε/kBT )

e−µ/kBT − 1− g e−ε/kBT
.

(c) The particle number is

N = −

(
∂Ω

∂µ

)

T

= −
z

kBT

(
∂Ω

∂z

)

T

=
1 + g e−ε/kBT

e−µ/kBT − 1− g e−ε/kBT
.

Solving for z = exp(µ/kBT ), we obtain

z =
1

1 +N−1
·

1

1 + g e−ε/kBT
.

(d) Expresssing the entropy S(T, µ) in terms of T and N , we obtain

S(T,N) = NkB ln
(
1+ g e−ε/kBT

)
+

Nε

T

1

g−1 eε/kBT + 1
+ kB ln(N +1)+NkB ln(1+N−1) .

In the thermodynamic limit N → ∞, the first two terms are extensive. The penultimate
term is O(lnN) and the last term is O(N0). The results agree in this limit with the OCE
results in problem 4.2c from the examples.
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