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0.1. PROBABILITY 1

0.1 Probability

(1.1) The information entropy of a distribution {pn} is defined as S = −∑n pn log2 pn, where n ranges over
all possible configurations of a given physical system and pn is the probability of the state |n〉. If there
are Ω possible states and each state is equally likely, then S = log2Ω, which is the usual dimensionless
entropy in units of ln 2.

Consider a normal deck of 52 distinct playing cards. A new deck always is prepared in the same order
(A♠ 2♠ · · ·K♣).

(a) What is the information entropy of the distribution of new decks?

(b) What is the information entropy of a distribution of completely randomized decks?

Figure 1: The riffle shuffle.

Now consider what it means to shuffle the cards. In an ideal
riffle shuffle, the deck is split and divided into two equal halves
of 26 cards each. One then chooses at random whether to take a
card from either half, until one runs through all the cards and a
new order is established (see figure).

(c) What is the increase in information entropy for a distribu-
tion of new decks that each have been shuffled once?

(d) Assuming each subsequent shuffle results in the same en-
tropy increase (i.e. neglecting redundancies), how many
shuffles are necessary in order to completely randomize a
deck?

Solution :

(a) Since each new deck arrives in the same order, we have p1 = 1 while p2,...,52! = 0, so S = 0.

(b) For completely randomized decks, pn = 1/Ω with n ∈ {1, . . . ,Ω} and Ω = 52!, the total number of
possible configurations. Thus, Srandom = log2 52! = 225.581.

(c) After one riffle shuffle, there are Ω =
(52
26

)
possible configurations. If all such configurations were

equally likely, we would have (∆S)riffle = log2
(52
26

)
= 48.817. However, they are not all equally likely.

For example, the probability that we drop the entire left-half deck and then the entire right half-deck is
2−26. After the last card from the left half-deck is dropped, we have no more choices to make. On the
other hand, the probability for the sequence LRLR · · · is 2−51, because it is only after the 51st card is
dropped that we have no more choices. We can derive an exact expression for the entropy of the riffle
shuffle in the following manner. Consider a deck of N = 2K cards. The probability that we run out
of choices after K cards is the probability of the first K cards dropped being all from one particular
half-deck, which is 2 · 2−K . Now let’s ask what is the probability that we run out of choices after (K +1)
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K ΩK SK log2
(
2K
K

)

2 6 2.500 2.585

12 2704156 20.132 20.367

26 4.96 × 1014 46.274 48.817

100 9.05 × 1058 188.730 195.851

Table 1: Riffle shuffle results.

cards are dropped. If all the remaining (K − 1) cards are from the right half-deck, this means that we
must have one of the R cards among the first K dropped. Note that this R card cannot be the (K + 1)th

card dropped, since then all of the first K cards are L, which we have already considered. Thus, there
are

(K
1

)
= K such configurations, each with a probability 2−K−1. Next, suppose we run out of choices

after (K + 2) cards are dropped. If the remaining (K − 2) cards are R, this means we must have 2 of the
R cards among the first (K + 1) dropped, which means

(K+1
2

)
possibilities. Note that the (K + 2)th card

must be L, since if it were R this would mean that the last (K − 1) cards are R, which we have already
considered. Continuing in this manner, we conclude

ΩK = 2

K∑

n=0

(
K + n− 1

n

)
=

(
2K

K

)

and

SK = −
ΩK∑

a=1

pa log2 pa =
K−1∑

n=0

(
K + n− 1

n

)
· 2−(K+n) · (K + n) .

The results are tabulated below in Table 1. For a deck of 52 cards, the actual entropy per riffle shuffle is
S26 = 46.274.

(d) Ignoring redundancies, we require k = Srandom/(∆S)riffle = 4.62 shuffles if we assume all riffle
outcomes are equally likely, and 4.88 if we use the exact result for the riffle entropy. Since there are
no fractional shuffles, we round up to k = 5 in both cases. In fact, computer experiments show that the
answer is k = 9. The reason we are so far off is that we have ignored redundancies, i.e. we have assumed
that all the states produced by two consecutive riffle shuffles are distinct. They are not! For decks with
asymptotically large numbers of cards N ≫ 1, the number of riffle shuffles required is k ≃ 3

2 log2N . See
D. Bayer and P. Diaconis, Annals of Applied Probability 2, 294 (1992).
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(1.2) A six-sided die is loaded so that the probability to throw a three is twice that of throwing a two,
and the probability of throwing a four is twice that of throwing a five.

(a) Find the distribution {pn} consistent with maximum entropy, given these constraints.

(b) Assuming the maximum entropy distribution, given two such identical dice, what is the probabil-
ity to roll a total of seven if both are thrown simultaneously?

Solution :

(a) We have the following constraints:

X0(p) = p1 + p2 + p3 + p4 + p5 + p6 − 1 = 0

X1(p) = p3 − 2p2 = 0

X2(p) = p4 − 2p5 = 0 .

We define

S∗(p,λ) ≡ −
∑

n

pn ln pn −
2∑

a=0

λaX
(a)(p) ,

and freely extremize over the probabilities {p1, . . . , p6} and the undetermined Lagrange multipliers
{λ0, λ1, λ2}. We obtain

∂S∗

∂p1
= −1− ln p1 − λ0

∂S∗

∂p4
= −1− ln p4 − λ0 − λ2

∂S∗

∂p2
= −1− ln p2 − λ0 + 2λ1

∂S∗

∂p5
= −1− ln p5 − λ0 + 2λ2

∂S∗

∂p3
= −1− ln p3 − λ0 − λ1

∂S∗

∂p6
= −1− ln p6 − λ0 .

Extremizing with respect to the undetermined multipliers generates the three constraint equations. We
therefore have

p1 = e−λ0−1 p4 = e−λ0−1 e−λ2

p2 = e−λ0−1 e2λ1 p5 = e−λ0−1 e2λ2

p3 = e−λ0−1 e−λ1 p6 = e−λ0−1 .

We solve for {λ0, λ1, λ2} by imposing the three constraints. Let x ≡ p1 = p6 = e−λ0−1. Then p2 = x e2λ1 ,
p3 = x e−λ1 , p4 = x e−λ2 , and p5 = x e2λ2 . We then have

p3 = 2p2 ⇒ e−3λ1 = 2

p4 = 2p5 ⇒ e−3λ2 = 2 .
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We may now solve for x:

6∑

n=1

pn =
(
2 + 21/3 + 24/3

)
x = 1 ⇒ x =

1

2 + 3 · 21/3 .

We now have all the probabilities:

p1 = x = 0.1730 p4 = 21/3x = 0.2180

p2 = 2−2/3x = 0.1090 p5 = 2−2/3x = 0.1090

p3 = 21/3x = 0.2180 p6 = x = 0.1730 .

(b) The probability to roll a seven with two of these dice is

P (7) = 2 p1 p6 + 2 p2 p5 + 2 p3 p4

= 2
(
1 + 2−4/3 + 22/3

)
x2 = 0.1787 .
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(1.3) Consider the contraption in Fig. 2. At each of k steps, a particle can fork to either the left (nj = 1)
or to the right (nj = 0). The final location is then a k-digit binary number.

(a) Assume the probability for moving to the left is p and the probability for moving to the right is
q ≡ 1 − p at each fork, independent of what happens at any of the other forks. I.e. all the forks
are uncorrelated. Compute 〈Xk〉. Hint: Xk can be represented as a k-digit binary number, i.e.

Xk = nk−1nk−2 · · · n1n0 =
∑k−1

j=0 2
jnj .

(b) Compute 〈X2
k〉 and the variance 〈X2

k〉 − 〈Xk〉2.

(c) Xk may be written as the sum of k random numbers. Does Xk satisfy the central limit theorem as
k → ∞? Why or why not?

Figure 2: Generator for a k-digit random binary number (k = 4 shown).

Solution :

(a) The position after k forks can be written as a k-digit binary number: nk−1nk−2 · · ·n1n0. Thus,

Xk =

k−1∑

j=0

2j nj ,

where nj = 0 or 1 according to Pn = p δn,1 + q δn,0. Now it is clear that 〈nj〉 = p, and therefore

〈Xk〉 = p
k−1∑

j=0

2j = p ·
(
2k − 1

)
.
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(b) The variance in Xk is

Var(Xk) = 〈X2
k〉 − 〈Xk〉2 =

k−1∑

j=0

k−1∑

j′=0

2j+j′
(
〈njnj′〉 − 〈nj〉〈nj′〉

)

= p(1− p)
k−1∑

j=0

4j = p(1− p) · 1
3

(
4k − 1

)
,

since 〈njnj′〉 − 〈nj〉〈nj′〉 = p(1− p) δjj′ .

(c) Clearly the distribution of Xk does not obey the CLT, since 〈Xk〉 scales exponentially with k. Also
note

lim
k→∞

√
Var(Xk)

〈Xk〉
=

√
1− p

3p
,

which is a constant. For distributions obeying the CLT, the ratio of the rms fluctuations to the mean
scales as the inverse square root of the number of trials. The reason that this distribution does not obey
the CLT is that the variance of the individual terms is increasing with j.
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(1.4) The binomial distribution,

BN (n, p) =

(
N

n

)
pn (1− p)N−n ,

tells us the probability for n successes in N trials if the individual trial success probability is p. The

average number of successes is ν =
∑N

n=0 nBN (n, p) = Np. Consider the limit N → ∞ with ν finite.

(a) Show that the probability of n successes becomes a function of n and ν alone. That is, evaluate

Pν(n) = lim
N→∞

BN (n, ν/N) .

This is the Poisson distribution.

(b) Show that the moments of the Poisson distribution are given by

〈nk〉 = e−ν
(
ν
∂

∂ν

)k
eν .

(c) Evaluate the mean and variance of the Poisson distribution.

The Poisson distribution is also known as the law of rare events since p = ν/N → 0 in the N → ∞ limit.
See http://en.wikipedia.org/wiki/Poisson distribution#Occurrence for some amusing applica-
tions of the Poisson distribution.

Solution :

(a) We have

Pν(n) = lim
N→∞

N !

n! (N − n)!

(
ν

N

)n(
1− ν

N

)N−n

.

Note that

(N − n)! ≃ (N − n)N−n en−N = NN−n
(
1− n

N

)N
en−N → NN−n eN ,

where we have used the result limN→∞
(
1 + x

N

)N
= ex. Thus, we find

Pν(n) =
1

n!
νn e−ν ,

the Poisson distribution. Note that
∑∞

n=0 Pn(ν) = 1 for any ν.

(b) We have

〈nk〉 =
∞∑

n=0

Pν(n)n
k =

∞∑

n=0

1

n!
nkνn e−ν

= e−ν
(
ν
d

dν

)k ∞∑

n=0

νn

n!
= e−ν

(
ν
∂

∂ν

)k
eν .

(c) Using the result from (b), we have 〈n〉 = ν and 〈n2〉 = ν + ν2, hence Var(n) = ν.
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(1.5) You should be familiar with Stirling’s approximation,

lnK! ∼ K lnK −K + 1
2 ln(2πK) +O

(
K−1

)
,

for large K . In this exercise, you will derive this expansion.

(a) Start by writing

K! =

∞∫

0

dx xK e−x ,

and define x ≡ K(t+ 1) so that K! = KK+1 e−K F (K), where

F (K) =

∞∫

−1

dt eKf(t) .

Find the function f(t).

(b) Expand f(t) =
∑∞

n=0 fn t
n in a Taylor series and find a general formula for the expansion coeffi-

cients fn. In particular, show that f0 = f1 = 0 and that f2 = −1
2 .

(c) If one ignores all the terms but the lowest order (quadratic) in the expansion of f(t), show that

∞∫

−1

dt e−Kt2/2 =

√
2π

K
−R(K) ,

and show that the remainder R(K) > 0 is bounded from above by a function which decreases
faster than any polynomial in 1/K .

(d) For the brave only! – Find the O
(
K−1

)
term in the expansion for lnK!.

Solution :

(a) Setting x = K(t+ 1), we have

K! = KK+1 e−K

∞∫

−1

dt (t+ 1)K e−t ,

hence f(t) = ln(t+ 1)− t.

(b) The Taylor expansion of f(t) is

f(t) = −1
2t

2 + 1
3t

3 − 1
4 t

4 + . . . .
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(c) Retaining only the leading term in the Taylor expansion of f(t), we have

F (K) ≃
∞∫

−1

dt e−Kt2/2

=

√
2π

K
−

∞∫

1

dt e−Kt2/2 .

Writing t ≡ s+ 1, the remainder is found to be

R(K) = e−K/2

∞∫

0

ds e−Ks2/2 e−Ks <

√
π

2K
e−K/2 ,

which decreases exponentially with K , faster than any power.

(d) We have

F (K) =

∞∫

−1

dt e−
1
2
Kt2e

1
3
Kt3− 1

4
Kt4+...

=

∞∫

−1

dt e−
1
2
Kt2
{
1 + 1

3Kt
3 − 1

4Kt
4 + 1

18K
2t6 + . . .

}

=

√
2π

K
·
{
1− 3

4K
−1 + 5

6K
−1 +O

(
K−2

)}

Thus,
lnK! = K lnK −K + 1

2 lnK + 1
2 ln(2π) +

1
12K

−1 +O
(
K−2

)
.
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(1.6) The probability density for a random variable x is given by the Lorentzian,

P (x) =
γ

π
· 1

x2 + γ2
.

Consider the sum XN =
∑N

i=1 xi , where each xi is independently distributed according to P (xi). Find
the probability ΠN(Y ) that |XN | < Y , where Y > 0 is arbitrary.

Solution :

The distribution of a sum of identically distributed random variables, X =
∑N

i=1 xi , is given by

PN (X) =

∞∫

−∞

dk

2π

[
P̂ (k)

]N
eikX ,

where P̂ (k) is the Fourier transform of the probability distribution P (xi) for each of the xi. The Fourier
transform of a Lorentzian is an exponential:

∞∫

−∞

dx P (x) e−ikx = e−γ|k| .

Thus,

PN (X) =

∞∫

−∞

dk

2π
e−Nγ|k| eikX

=
Nγ

π
· 1

X2 +N2γ2
.

The probability for X to lie in the interval X ∈ [−Y, Y ], where Y > 0, is

ΠN(Y ) =

Y∫

−Y

dX PN (X) =
2

π
tan−1

(
Y

Nγ

)
.

The integral is easily performed with the substitutionX = Nγ tan θ. Note thatΠN (0) = 0 andΠN(∞) =
1.
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(1.7) Let P (x) = (2πσ2)−1/2 e−(x−µ)2/2σ2

. Compute the following integrals:

(a) I =
∞∫

−∞
dx P (x)x3.

(b) I =
∞∫

−∞
dx P (x) cos(Qx).

(c) I =
∞∫

−∞
dx

∞∫
−∞

dy P (x)P (y) exy . You may set µ = 0 to make this somewhat simpler. Under what

conditions does this expression converge?

Solution :

(a) Write
x3 = (x− µ+ µ)3 = (x− µ)3 + 3(x− µ)2µ+ 3(x− µ)µ2 + µ3 ,

so that

〈x3〉 = 1√
2πσ2

∞∫

−∞

dt e−t2/2σ2
{
t3 + 3t2µ+ 3tµ2 + µ3

}
.

Since exp(−t2/2σ2) is an even function of t, odd powers of t integrate to zero. We have 〈t2〉 = σ2, so

〈x3〉 = µ3 + 3µσ2 .

A nice trick for evaluating 〈t2k〉:

〈t2k〉 =

∞∫
−∞
dt e−λt2 t2k

∞∫
−∞
dt e−λt2

=

(−1)k dk

dλk

∞∫
−∞
dt e−λt2

∞∫
−∞
dt e−λt2

=
(−1)k√

λ

dk
√
λ

dλk

∣∣∣∣∣
λ=1/2σ2

= 1
2 · 3

2 · · ·
(2k−1)

2 λ−k
∣∣
λ=1/2σ2 =

(2k)!

2k k!
σ2k .

(b) We have

〈cos(Qx)〉 = Re 〈eiQx〉 = Re

[
eiQµ

√
2πσ2

∞∫

−∞

dt e−t2/2σ2

eiQt

]

= Re
[
eiQµ e−Q2σ2/2

]
= cos(Qµ) e−Q2σ2/2 .

Here we have used the result

1√
2πσ2

∞∫

−∞

dt e−αt2−βt =

√
π

α
eβ

2/4α
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with α = 1/2σ2 and β = −iQ. Another way to do it is to use the general result derive above in part (a)
for 〈t2k〉 and do the sum:

〈cos(Qx)〉 = Re 〈eiQx〉 = Re

[
eiQµ

√
2πσ2

∞∫

−∞

dt e−t2/2σ2

eiQt

]

= cos(Qµ)
∞∑

k=0

(−Q2)k

(2k)!
〈t2k〉 = cos(Qµ)

∞∑

k=0

1

k!

(
− 1

2Q
2σ2
)k

= cos(Qµ) e−Q2σ2/2 .

(c) We have

I =

∞∫

−∞

dx

∞∫

−∞

dy P (x)P (y) eκ
2xy =

e−µ2/2σ2

2πσ2

∫
d2x e−

1
2
Aij xi xj ebi xi ,

where x = (x, y),

A =

(
σ2 −κ2
−κ2 σ2

)
, b =

(
µ/σ2

µ/σ2

)
.

Using the general formula for the Gaussian integral,

∫
dnx e−

1
2
Aij xi xj ebi xi =

(2π)n/2√
det(A)

exp
(
1
2A

−1
ij bi bj

)
,

we obtain

I =
1√

1− κ4σ4
exp

(
µ2κ2

1− κ2σ2

)
.

Convergence requires κ2σ2 < 1.
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(1.8) Consider a D-dimensional random walk on a hypercubic lattice. The position of a particle after N
steps is

RN =
N∑

j=1

n̂j ,

where n̂j can take on one of 2D possible values: n̂j ∈
{
± ê1, . . . ,±êD

}
, where êµ is the unit vector

along the positive xµ axis. Each of these possible values occurs with probability 1/2D, and each step is
statistically independent from all other steps.

(a) Consider the generating function SN (k) =
〈
eik·RN

〉
. Show that

〈
R

α1

N · · ·RαJ
N

〉
=

1

i

∂

∂kα1

· · · 1
i

∂

∂kαJ

∣∣∣∣
k=0

SN (k) .

For example, 〈Rα
NR

β
N 〉 = −

(
∂2SN (k)/∂kα∂kβ

)
k=0

.

(b) Evaluate SN (k) for the case D = 3 and compute the quantities 〈X4
N 〉 and 〈X2

N Y 2
N 〉.

Solution :

(a) The result follows immediately from

1

i

∂

∂kα
eik·R = Rα e

ik·R

1

i

∂

∂kα

1

i

∂

∂kβ
eik·R = RαRβ e

ik·R ,

et cetera. Keep differentiating with respect to the various components of k.

(b) For D = 3, there are six possibilities for n̂j : ±x̂, ±ŷ, and ±ẑ. Each occurs with a probability 1
6 ,

independent of all the other n̂j′ with j′ 6= j. Thus,

SN (k) =

N∏

j=1

〈eik·n̂j 〉 =
[
1

6

(
eikx + e−ikx + eiky + e−iky + eikz + e−ikz

)]N

=

(
cos kx + cos ky + cos kz

3

)N
.

We have

〈X4
N 〉 = ∂4S(k)

∂k4x

∣∣∣∣∣
k=0

=
∂4

∂k4x

∣∣∣∣∣
kx=0

(
1− 1

6 k
2
x +

1
72 k

4
x + . . .

)N

=
∂4

∂k4x

∣∣∣∣∣
kx=0

[
1 +N

(
− 1

6 k
2
x +

1
72 k

4
x + . . .

)
+ 1

2N(N − 1)
(
− 1

6 k
2
x +

1
72 k

4
x + . . .

)2
+ . . .

]

=
∂4

∂k4x

∣∣∣∣∣
kx=0

[
1− 1

6Nk
2
x +

1
72N

2k4x + . . .
]
= 1

3N
2 .
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Similarly, we have

〈X2
N Y 2

N 〉 = ∂4S(k)

∂k2x ∂k
2
y

∣∣∣∣∣
k=0

=
∂4

∂k2x ∂k
2
y

∣∣∣∣∣
kx=0

(
1− 1

6 (k
2
x + k2y) +

1
72 (k

4
x + k4y) + . . .

)N

=
∂4

∂k2x ∂k
2
y

∣∣∣∣∣
kx=ky=0

[
1 +N

(
− 1

6 (k
2
x + k2y) +

1
72 (k

4
x + k4y) + . . .

)
+ 1

2N(N − 1)
(
− 1

6 (k
2
x + k2y) + . . .

)2
+ . . .

]

=
∂4

∂k2x ∂k
2
y

∣∣∣∣∣
kx=ky=0

[
1− 1

6N(k2x + k2y) +
1
72N

2(k4x + k + y4) + 1
36 k

2
x k

2
y + . . .

]
= 1

9N(N − 1) .
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(1.9) A rare disease is known to occur in f = 0.02% of the general population. Doctors have designed a
test for the disease with ν = 99.90% sensitivity and ρ = 99.95% specificity.

(a) What is the probability that someone who tests positive for the disease is actually sick?

(b) Suppose the test is administered twice, and the results of the two tests are independent. If a ran-
dom individual tests positive both times, what are the chances he or she actually has the disease?

(c) For a binary partition of events, find an expression for P (X|A ∩ B) in terms of P (A|X), P (B|X),
P (A|¬X), P (B|¬X), and the priors P (X) and P (¬X) = 1 − P (X). You should assume A and B
are independent, so P (A ∩B|X) = P (A|X) · P (B|X).

Solution :

(a) Let X indicate that a person is infected, and A indicate that a person has tested positive. We then
have ν = P (A|X) = 0.9990 is the sensitivity and ρ = P (¬A|¬X) = 0.9995 is the specificity. From Bayes’
theorem, we have

P (X|A) = P (A|X) · P (X)

P (A|X) · P (X) + P (A|¬X) · P (¬X)
=

νf

νf + (1− ρ)(1 − f)
,

where P (A|¬X) = 1 − P (¬A|¬X) = 1 − ρ and P (X) = f is the fraction of infected individuals in the
general population. With f = 0.0002, we find P (X|A) = 0.2856.

(b) We now need

P (X|A2) =
P (A2|X) · P (X)

P (A2|X) · P (X) + P (A2|¬X) · P (¬X)
=

ν2f

ν2f + (1− ρ)2(1− f)
,

where A2 indicates two successive, independent tests. We find P (X|A2) = 0.9987.

(c) Assuming A and B are independent, we have

P (X|A ∩B) =
P (A ∩B|X) · P (X)

P (A ∩B|X) · P (X) + P (A ∩B|¬X) · P (¬X)

=
P (A|X) · P (B|X) · P (X)

P (A|X) · P (B|X) · P (X) + P (A|¬X) · P (B|¬X) · P (¬X)
.

This is exactly the formula used in part (b).
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(1.10) Let p(x) = Pr[X = x] where X is a discrete random variable and both X and x are taken from an
‘alphabet’ X . Let p(x, y) be a normalized joint probability distribution on two random variables X ∈ X
and Y ∈ Y . The entropy of the joint distribution is S(X,Y ) = −∑x,y p(x, y) log p(x, y). The conditional
probability p(y|x) for y given x is defined as p(y|x) = p(x, y)/p(x), where p(x) =

∑
y p(x, y).

(a) Show that the conditional entropy S(Y |X) = −∑x,y p(x, y) log p(y|x) satisfies

S(Y |X) = S(X,Y )− S(X) .

Thus, conditioning reduces the entropy, and the entropy of a pair of random variables is the sum
of the entropy of one plus the conditional entropy of the other.

(b) The mutual information I(X,Y ) is

I(X,Y ) =
∑

x,y

p(x, y) log

(
p(x, y)

p(x) p(y)

)
.

Show that

I(X,Y ) = S(X) + S(Y )− S(X,Y ) .

(c) Show that S(Y |X) ≤ S(Y ) and that the equality holds only when X and Y are independently
distributed.

Solution :

(a) We have

S(Y |X) = −
∑

x,y

p(x, y) log

(
p(x, y)

p(x)

)

= −
∑

x,y

p(x, y) log p(x, y) +
∑

x,y

p(x, y) log p(x)

= S(X,Y )− S(X) ,

since
∑

y p(x, y) = p(x).

(b) Clearly

I(X,Y ) =
∑

x,y

p(x, y)
(
log p(x, y)− log p(x)− log p(y)

)

=
∑

x,y

p(x, y) log p(x, y)−
∑

x

p(x) log p(x)−
∑

y

p(y) log p(y)

= S(X) + S(Y )− S(X,Y ) .
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(c) Let’s introduce some standard notation1. Denote the average of a function of a random variable as

Ef(X) =
∑

x∈X
p(x)f(x) .

Equivalently, we could use the familiar angular bracket notation for averages and write Ef(X) as〈
f(X)

〉
. For averages over several random variables, we have

Ef(X,Y ) =
∑

x∈X

∑

y∈Y
p(x, y) f(x, y) ,

et cetera. Now here’s a useful fact. If f(x) is a convex function, then

Ef(X) ≥ f(EX) .

For continuous functions, f(x) is convex if f ′′(x) ≥ 0 everywhere2. If f(x) is convex on some interval
[a, b], then for x1,2 ∈ [a, b] we must have

f
(
λx1 + (1− λ)x2

)
≤ λ f(x1) + (1− λ) f(x2) .

This is easily generalized to

f
(∑

n

pn xn

)
≤
∑

n

pn f(xn) ,

where
∑

n pn = 1, which proves our claim - a result known as Jensen’s theorem.

Now log x is concave, hence the function f(x) = −log x is convex, and therefore

I(X,Y ) = −
∑

x,y

p(x, y) log

(
p(x) p(y)

p(x, y)

)
= −E log

(
p(X) p(Y )

p(X,Y )

)

≥ − logE

(
p(X) p(Y )

p(X,Y )

)
= − log

(∑

x,y

p(x, y) · p(x) p(y)
p(x, y)

)

= − log

(∑

x

p(x) ·
∑

y

p(y)

)
= − log(1) = 0 .

So I(X,Y ) ≥ 0. Clearly I(X,Y ) = 0 when X and Y are independently distributed, i.e. when p(x, y) =
p(x) p(y). Using the results from part (b), we then have

I(X,Y ) = S(X) + S(Y )− S(X,Y )

= S(Y )− S(Y |X) ≥ 0 .

1See e.g. T. M. Cover and J. A. Thomas, Elements of Information Theory , 2nd edition (Wiley, 2006).
2A concave function g(x) is one for which f(x) = −g(x) is convex.
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(1.11) The nth moment of the normalized Gaussian distribution P (x) = (2π)−1/2 exp
(
− 1

2x
2
)

is defined
by

〈xn〉 = 1√
2π

∞∫

−∞

dx xn exp
(
− 1

2x
2
)

Clearly 〈xn〉 = 0 if n is a nonnegative odd integer. Next consider the generating function

Z(j) =
1√
2π

∞∫

−∞

dx exp
(
− 1

2x
2
)
exp(jx) = exp

(
1
2j

2
)

.

(a) Show that

〈xn〉 = dnZ

djn

∣∣∣∣∣
j=0

and provide an explicit result for 〈x2k〉 where k ∈ N.

(b) Now consider the following integral:

F (λ) =
1√
2π

∞∫

−∞

dx exp

(
− 1

2
x2 − λ

4!
x4
)

.

The integral has no known analytic form3, but we may express the result as a power series in the
parameter λ by Taylor expanding exp

(
− λ

4 ! x
4
)

and then using the result of part (a) for the moments
〈x4k〉. Find the coefficients in the perturbation expansion,

F (λ) =
∞∑

k=0

Ck λ
k .

(c) Define the remainder after N terms as

RN (λ) = F (λ)−
N∑

k=0

Ck λ
k .

ComputeRN (λ) by evaluating numerically the integral forF (λ) (using Mathematicaor some other
numerical package) and subtracting the finite sum. Then define the ratio SN (λ) = RN (λ)/F (λ),
which is the relative error from the N term approximation and plot the absolute relative error∣∣SN (λ)

∣∣ versus N for several values of λ.(I suggest you plot the error on a log scale.) What do you
find?? Try a few values of λ including λ = 0.01, λ = 0.05, λ = 0.2, λ = 0.5, λ = 1, λ = 2.

3In fact, it does. According to Mathematica, F (λ) =
√

2u
π

exp(u)K1/4(u), where u = 3/4λ and Kν(z) is the modified

Bessel function. I am grateful to Prof. John McGreevy for pointing this out.



0.1. PROBABILITY 19

(d) Repeat the calculation for the integral

G(λ) =
1√
2π

∞∫

−∞

dx exp

(
− 1

2
x2 − λ

6!
x6
)

.

(e) Reflect meaningfully on the consequences for weakly and strongly coupled quantum field theories.
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Solution :

(a) Clearly

dn

djn

∣∣∣∣∣
j=0

ejx = xn ,

so 〈xn 〉 =
(
dnZ/djn

)
j=0

. With Z(j) = exp
(
1
2j

2
)
, only the kth order term in j2 in the Taylor series for

Z(j) contributes, and we obtain

〈x2k 〉 = d2k

dj2k

(
j2k

2k k!

)
=

(2k)!

2k k!
.

(b) We have

F (λ) =
∞∑

n=0

1

n!

(
− λ

4!

)n
〈x4n 〉 =

∞∑

n=0

(4n)!

4n (4!)n n! (2n)!
(−λ)n .

This series is asymptotic. It has the properties

lim
λ→0

RN (λ)

λN
= 0 (fixed N ) , lim

N→∞
RN (λ)

λN
= ∞ (fixed λ) ,

where RN (λ) is the remainder after N terms, defined in part (c). The radius of convergence is zero. To
see this, note that if we reverse the sign of λ, then the integrand of F (λ) diverges badly as x → ±∞. So
F (λ) is infinite for λ < 0, which means that there is no disk of any finite radius of convergence which
encloses the point λ = 0. Note that by Stirling’s rule,

(−1)n Cn ≡ (4n)!

4n (4!)n n! (2n)!
∼ nn ·

(
2
3

)n
e−n · (πn)−1/2 ,

and we conclude that the magnitude of the summand reaches a minimum value when n = n∗(λ), with

n∗(λ) ≈ 3

2λ

for small values of λ. For large n, the magnitude of the coefficient Cn grows as |Cn| ∼ en lnn+O(n), which
dominates the λn term, no matter how small λ is.

(c) Results are plotted in fig. 3.

It is worth pointing out that the series for F (λ) and for lnF (λ) have diagrammatic interpretations. For
a Gaussian integral, one has

〈x2k 〉 = 〈x2 〉k ·A2k

where A2k is the number of contractions. For a proof, see §1.4.3 of the notes. For our integral, 〈x2 〉 = 1.
The number of contractions A2k is computed in the following way. For each of the 2k powers of x,
we assign an index running from 1 to 2k. The indices are contracted, i.e. paired, with each other. How
many pairings are there? Suppose we start with any from among the 2k indices. Then there are (2k− 1)
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Figure 3: Relative error versus number of terms kept for the asymptotic series for F (λ). Note that the
optimal number of terms to sum is N∗(λ) ≈ 3

2λ .

choices for its mate. We then choose another index arbitrarily. There are now (2k − 3) choices for its
mate. Carrying this out to its completion, we find that the number of contractions is

A2k = (2k − 1)(2k − 3) · · · 3 · 1 =
(2k)!

2k k!
,

exactly as we found in part (a). Now consider the integral F (λ). If we expand the quartic term in a power
series, then each power of λ brings an additional four powers of x. It is therefore convenient to represent
each such quartet with the symbol ×. At orderN of the series expansion, we have N ×’s and 4N indices
to contract. Each full contraction of the indices may be represented as a labeled diagram, which is in
general composed of several disjoint connected subdiagrams. Let us label these subdiagrams, which we
will call clusters, by an index γ. Now suppose we have a diagram consisting of mγ subdiagrams of type
γ, for each γ. If the cluster γ contains nγ vertices (×), then we must have

N =
∑

γ

mγ nγ .

How many ways are there of assigning the labels to such a diagram? One might think (4!)N ·N !, since
for each vertex × there are 4! permutations of its four labels, and there are N ! ways to permute all the
vertices. However, this overcounts diagrams which are invariant under one or more of these permuta-
tions. We define the symmetry factor sγ of the (unlabeled) cluster γ as the number of permutations of the
indices of a corresponding labeled cluster which result in the same contraction. We can also permute
the mγ identical disjoint clusters of type γ.

Examples of clusters and their corresponding symmetry factors are provided in fig. 4, for all diagrams
with nγ ≤ 3. There is only one diagram with nγ = 1, resembling ©•©. To obtain sγ = 8, note that each of
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Figure 4: Cluster symmetry factors. A vertex is represented as a black dot (
•) with four ‘legs’.

the circles can be separately rotated by an angle π about the long symmetry axis. In addition, the figure
can undergo a planar rotation by π about an axis which runs through the sole vertex and is normal to
the plane of the diagram. This results in sγ = 2 · 2 · 2 = 8. For the cluster ©•©•©, there is one extra circle,
so sγ = 24 = 16. The third diagram in figure shows two vertices connected by four lines. Any of the 4!
permutations of these lines results in the same diagram. In addition, we may reflect about the vertical
symmetry axis, interchanging the vertices, to obtain another symmetry operation. Thus sγ = 2 · 4! = 48.
One might ask why we don’t also count the planar rotation by π as a symmetry operation. The answer
is that it is equivalent to a combination of a reflection and a permutation, so it is not in fact a distinct
symmetry operation. (If it were distinct, then sγ would be 96.) Finally, consider the last diagram in
the figure, which resembles a sausage with three links joined at the ends into a circle. If we keep the
vertices fixed, there are 8 symmetry operations associated with the freedom to exchange the two lines
associated with each of the three sausages. There are an additional 6 symmetry operations associated
with permuting the three vertices, which can be classified as three in-plane rotations by 0, 2π

3 and 4π
3 ,

each of which can also be combined with a reflection about the y-axis (this is known as the group C3v).
Thus, sγ = 8 · 6 = 48.

Now let us compute an expression for F (γ) in terms of the clusters. We sum over all possible numbers
of clusters at each order:

F (γ) =
∞∑

N=0

1

N !

∑

{mγ}

(4!)NN !
∏

γ s
mγ
γ mγ !

(
− λ

4!

)N
δN,

∑
γ mγnγ

= exp

(∑

γ

(−λ)nγ

sγ

)
.

Thus,

lnF (γ) =
∑

γ

(−λ)nγ

sγ
,

and the logarithm of the sum over all diagrams is a sum over connected clusters. It is instructive to work this
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out to order λ2. We have, from the results of part (b),

F (λ) = 1− 1
8 λ+ 35

384 λ
2 +O(λ3) =⇒ lnF (λ) = −1

8 λ+ 1
12 λ

2 +O(λ3) .

Note that there is one diagram with N = 1 vertex, with symmetry factor s = 8. ForN = 2 vertices, there
are two diagrams, one with s = 16 and one with s = 48 (see fig. 4). Since 1

16 +
1
48 = 1

12 , the diagrammatic
expansion is verified to order λ2.

(d) We now have4

G(λ) =
1√
2π

∞∫

−∞

dx exp

(
− 1

2
x2 − λ

6!
x6
)

=

∞∑

n=0

1

n!

(
− λ

6!

)n
〈x6n〉 =

∞∑

n=0

Cn λ
n ,

where

Cn =
(−1)n (6n)!

(6!)n n! 23n (3n)!
.

Invoking Stirling’s approximation, we find

ln |Cn| ∼ 2n lnn−
(
2 + ln 5

3

)
n .

From the above expression for Cn, we see that the magnitude of the contribution of the nth term in the
perturbation series is

Cn λ
n = (−1)n exp

(
2n lnn−

(
2 + ln 10

3

)
n+ n lnλ

)
.

Differentiating, we find that this contribution is minimized for n = n∗(λ), where

n∗(λ) =

√
10

3λ
.

Via numerical integration using FORTRAN subroutines from QUADPACK, one obtains the results in
Fig. 5 and Tab. ??.

The series for G(λ) and for lnG(λ) again have diagrammatic interpretations. If we expand the sextic
term in a power series, each power of λ brings an additional six powers of x. It is natural to represent
each such sextet with as a vertex with six legs. At order N of the series expansion, we have N such
vertices and 6N legs to contract. As before, each full contraction of the leg indices may be represented as

4According to Mathematica, the G(λ) has the analytic form G(λ) = π
√

u
[

Ai
2(u)+Bi

2(u)
]

, where u = (15/2λ)1/3 and Ai(z)

and Bi(z) are Airy functions. The definitions and properties of the Airy functions are discussed in §9.2 of the NIST Handbook
of Mathematical Functions.
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Figure 5: Logarithm of ratio of remainder after N terms RN (λ) to the value of the integral G(λ), for
various values of λ.

λ 10 2 0.5 0.2 0.1 0.05 0.02

F 0.92344230 0.97298847 0.99119383 0.996153156 0.99800488 0.99898172 0.99958723

n∗ 0.68 1.3 2.6 4.1 5.8 8.2 13

Table 2: F (λ) and n∗(λ) for problem 8d.

a labeled diagram, which is in general composed of several disjoint connected clusters. If the cluster γ
contains nγ vertices, then for any diagram we again must have N =

∑
γ mγnγ , where mγ is the number

of times the cluster γ appears. As with the quartic example, the number of ways of assigning labels to a
given diagram is given by the total number of possible permutations (6!)N ·N ! divided by a correction

factor
∏

γ s
mγ
γ mγ !, where sγ is the symmetry factor of the cluster γ, and the mγ ! term accounts for the

possibility of permuting among different labeled clusters of the same type γ.

Examples of clusters and their corresponding symmetry factors are provided in Fig. 6. There is only one
diagram with nγ = 1, shown panel (a), resembling a three-petaled flower. To obtain sγ = 48, note that
each of the petals can be rotated by 180◦ about an axis bisecting the petal, yielding a factor of 23. The
three petals can then be permuted, yielding an additional factor of 3!. Hence the total symmetry factor
is sγ = 23 · 3! = 48. Now we can see how dividing by the symmetry factor saves us from overcounting.
In this case, we get 6!/sγ = 720/48 = 15 = 5 · 3 · 1, which is the correct number of contractions. For the
diagram in panel (b), the four petals and the central loop can each be rotated about a symmetry axis,
yielding a factor 25. The two left petals can be permuted, as can the two right petals. Finally, the two
vertices can themselves be permuted. Thus, the symmetry factor is sγ = 25 · 22 · 2 = 28 = 256. In panel
(c), the six lines can be permuted (6!) and the vertices can be exchanged (2), hence sγ = 6! · 2 = 1440.
In panel (d), the two outer loops each can be twisted by 180◦, the central four lines can be permuted,
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Figure 6: Diagrams and their symmetry factors for the 1
6!λx

6 zero-dimensional field theory

and the vertices can be permuted, hence sγ = 22 · 4! · 2 = 192. Finally, in panel (e), each pair of vertices
is connected by three lines which can be permuted, and the vertices themselves can be permuted, so
sγ = (3!)3 · 3! = 1296.

Now let us compute an expression for F (γ) in terms of the clusters. We sum over all possible numbers
of clusters at each order:

G(γ) =

∞∑

N=0

1

N !

∑

{mγ}

(6!)NN !
∏

γ s
mγ
γ mγ !

(
− λ

6!

)N
δN,

∑
γ mγnγ

= exp

(∑

γ

(−λ)nγ

sγ

)
.

Thus,

lnG(γ) =
∑

γ

(−λ)nγ

sγ
,

and the logarithm of the sum over all diagrams is a sum over connected clusters. It is instructive to work this
out to order λ2. We have, from the results of part (a),

G(λ) = 1− λ

26 ·3 +
7·11·λ2
29 ·3·5 +O(λ3) =⇒ lnG(λ) = − λ

26 ·3 +
113·λ2
28 ·32 ·5 +O(λ3) .

Note that there is one diagram with N = 1 vertex, with symmetry factor s = 48. For N = 2 vertices,
there are three diagrams, one with s = 256, one with s = 1440, and one with s = 192 (see Fig. 6). Since
1

256 + 1
1440 + 1

192 = 113
28325

, the diagrammatic expansion is verified to order λ2.

(e) In quantum field theory (QFT), the vertices themselves carry space-time labels, and the contractions,
i.e. the lines connecting the legs of the vertices, are propagators G(xµi − xµj ), where xµi is the space-time
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label associated with vertex i. It is convenient to work in momentum-frequency space, in which case
we work with the Fourier transform Ĝ(pµ) of the space-time propagators. Integrating over the space-
time coordinates of each vertex then enforces total 4-momentum conservation at each vertex. We then
must integrate over all the internal 4-momenta to obtain the numerical value for a given diagram. The
diagrams, as you know, are associated with Feynman’s approach to QFT and are known as Feynman
diagrams. Our example here is equivalent to a (0+0)-dimensional field theory, i.e. zero space dimensions
and zero time dimensions. There are then no internal 4-momenta to integrate over, and each propagator
is simply a number rather than a function. The discussion above of symmetry factors sγ carries over to
the more general QFT case.

There is an important lesson to be learned here about the behavior of asymptotic series. As we have
seen, if λ is sufficiently small, summing more and more terms in the perturbation series results in better
and better results, until one reaches an optimal order when the error is minimized. Beyond this point,
summing additional terms makes the result worse, and indeed the perturbation series diverges badly as
N → ∞. Typically the optimal order of perturbation theory is inversely proportional to the coupling
constant. For quantum electrodynamics (QED), where the coupling constant is the fine structure con-
stant α = e2/~c ≈ 1

137 , we lose the ability to calculate in a reasonable time long before we get to 137
loops, so practically speaking no problems arise from the lack of convergence. In quantum chromody-
namics (QCD), however, the effective coupling constant is about two orders of magnitude larger, and
perturbation theory is a much more subtle affair.
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0.2 Thermodynamics

(2.1) ν moles of an ideal diatomic gas are driven along the cycle depicted in Fig. 7. Section AB is an
adiabatic free expansion; section BC is an isotherm at temperature TA = TB = TC; CD is an isobar, and
DA is an isochore. The volume at B is given by VB = (1− x)VA + xVC, where 0 ≤ x ≤ 1.

(a) Find an expression for the total work Wcycle in terms of ν, TA, VA, VC, and x.

(b) Suppose VA = 1.0L, VC = 5.0L, TA = 500K, and ν = 5. What is the volume VB such that
Wcycle = 0?

Figure 7: Engine cycle for problem 1,
consisting of adiabatic free expansion
(AB), isotherm (BC), isobar (CD), and iso-
chore (DA).

Solution :

(a) We have WAB =WDA = 0, and

WBC =

C∫

B

p dV = νRTA

C∫

B

dV

V
= νRTA ln

(
VC
VB

)

WCD =

D∫

C

p dV = pC(VD − VC) = −νRTA
(
1− VA

VC

)
.

Thus,

WCYC = νRTA

[
ln

(
VC
VB

)
− 1 +

VA
VC

]
.

(b) Setting VB = (1− x)VA + xVC, and defining r ≡ VA/VC, we have

WCYC = νRTA

(
− ln

(
x+ (1− x) r

)
+ 1− r

)
,

and setting WCYC = 0 we obtain x = x∗, with

x∗ =
er−1 − r

1− r
.

For VA = 1.0L and VC = 5.0L, we have r = 1
5 and x∗ = 0.31, corresponding to VB = 2.2L.
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(2.2) A strange material obeys the equation of state E(S, V,N) = aS7/V 4N2, where a is a dimensionful
constant.

(a) What are the SI dimensions of a?

(b) Find the equation of state relating p, T , and n = N/V .

(c) Find the coefficient of thermal expansion αp = 1
V

(
∂V
∂T

)
p

and the isothermal compressibility κT =

− 1
V

(
∂V
∂p

)
T

. Express your answers in terms of p and T .

(d) ν moles of this material execute a Carnot cycle between reservoirs at temperatures T1 and T2. Find
the heat Q and work W for each leg of the cycle, and find the cycle efficiency η.

A

B

C
D

Figure 8: The Carnot cycle.

Solution :

(a) Clearly [a] = K7m12/J6 where K are Kelvins, m are meters,
and J are Joules.

(b) We have

T = +

(
∂E

∂S

)

V,N

=
7aS6

N2V 4

p = −
(
∂E

∂V

)

S,N

=
4aS7

N2V 5
.

We must eliminate S. Dividing the second of these equations by
the first, we find S = 7pV/4T , and substituting this into either
equation, we obtain the equation of state,

p = c ·
(
N

V

)1/3
T 7/6 ,

with c = 6
77/6

a−1/6.

(c) Taking the logarithm and then the differential of the above equation of state, we have

dp

p
+
dV

3V
− 7 dT

6T
− dN

3N
= 0 .

Thus,

αp =
1

V

(
∂V

∂T

)

p,N

=
7

2T
, κT = − 1

V

(
∂V

∂p

)

T,N

=
3

p
.

(d) From the results of part (b), we have that dS = 0 means d(N2V 4T ) = 0, so with N constant the
equation for adiabats is d(TV 4) = 0. Thus, for the Carnot cycle of Fig. 26, we have

T2 V
4
A = T1 V

4
D , T2 V

4
B = T1 V

4
C .
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We shall use this relation in due time. Another relation we shall use is obtained by dividing out the S7

factor common in the expressions for E and for p, then substituting for p using the equation of state:

E = 1
4pV = 1

4cN
1/3 V 2/3 T 7/6 .

AB: Consider the AB leg of the Carnot cycle. We use the equation of state along the isotherm to find

WAB =

V
B∫

V
A

dV p = 3
2cN

1/3 T
7/6
2

(
V

2/3
B − V

2/3
A

)
.

Since E depends on volume, unlike the case of the ideal gas, there is a change in energy along this leg:

(∆E)AB = EB − EA = 1
4cN

1/3 T
7/6
2

(
V

2/3
B − V

2/3
A

)
.

Finally, the heat absorbed by the engine material during this leg is

QAB = (∆E)AB +WAB = 7
4cN

1/3 T
7/6
2

(
V

2/3
B − V

2/3
A

)
.

BC: Next, consider the BC leg. Clearly QBC = 0 since BC is an adiabat. Thus,

WBC = −(∆E)BC = EB − EC = 1
4cN

1/3
(
T
7/6
2 V

2/3
B − T

7/6
1 V

2/3
C

)
.

But the fact that BC is an adiabat guarantees V
2/3
C = (T2/T1)

1/6 V
2/3
B , hence

WBC = 1
4cN

1/3 V
2/3
B T

1/6
2 (T2 − T1) .

CD: For the CD leg, we can apply the results from AB, mutatis mutandis. Thus,

WCD = 3
2cN

1/3 T
7/6
2

(
V

2/3
D − V

2/3
C

)
.

We now use the adiabat conditions V
2/3
C = (T2/T1)

1/6 V
2/3
B and V

2/3
D = (T2/T1)

1/6 V
2/3
A to write WCD as

WCD = 3
2cN

1/3 T1 T
1/6
2

(
V

2/3
A − V

2/3
B

)
.

We therefore have
QCD = 7

4cN
1/3 T1 T

1/6
2

(
V

2/3
A − V

2/3
B

)
.

Note that both WCD and QCD are negative.

DA: We apply the results from the BC leg, mutatis mutandis, and invoke the adiabat conditions. We find
QDA = 0 and

WDA = 1
4cN

1/3 V
2/3
A T

1/6
2 (T2 − T1) .
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For the cycle, we therefore have

Wcyc =WAB +WBC +WCD +WDA = 7
4cN

1/3 T
1/6
2 (T2 − T1)

(
V

2/3
B − V

2/3
A

)
.

and thus

η =
Wcyc

QAB

= 1− T1
T2

.

This is the same result as for an ideal gas, as must be the case as per the Second Law of Thermodynamics.



0.2. THERMODYNAMICS 31

(2.3) For each of the following situations, explain clearly and fully why it is or is not thermodynamically
possible.

(a) Energy function E(S, V,N) = aS V N with a constant.

(b) Equation of state V = aN pT with a constant.

(c) A system where
(
∂V
∂T

)
p,N

< 0 over some range of T and p.

(d) The phase diagram for a single component system depicted in Fig. 9 (left panel). (You only need
know that a superfluid is a distinct thermodynamic phase.)

(e) The phase diagram for a single component system in Fig. 9 (right panel). (You only need know
that BCC, HCP, and FCC solids are distinct phases.)

(f) E(S, V,N) = aN2 V −1 exp(S/Nb) with a and b constant.

(g) 15 Joules of heat energy are required to raise the temperature of a system by ∆T = 1◦C at constant
volume. 10 Joules of heat energy are required to raise the temperature of the same system by
∆T = 1◦F at constant pressure.

(h) A heat engine operating between reservoirs at temperatures T1 = 400K and T2 = 600K. During
each cycle, the engine does work W = 300 J and the entropy of the upper reservoir decreases by
2.00 J/K.

Figure 9: Phase diagrams for parts (d) and (e) of problem 3.

Solution :

(a) No! E(λS, λV, λN) = λ3E(S, V,N) is homogeneous of degree 3 – not extensive.

(b) No! The isothermal compressibility κT = − 1
V

(
∂V
∂p

)
T
= −1/p is negative, which violates κT > κS > 0.
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(c) Yes! Many systems, such as water, contract upon a temperature increase over some range of temper-
ature.

(d) No! This one is tricky. From the Clapeyron equation, we have
( dp
dT

)
coex

= ∆s
∆v . Nernst’s law says

that the entropy of both the solid and superfluid phases must vanish at T = 0. Therefore all coexistence
curves which intersect the pressure axis at T = 0 must do so with zero slope.

(e) No! The Gibbs phase rule d = 2 + σ − ϕ gives the dimension of thermodynamic space over which
ϕ distinct phases among σ species can coexist. For σ = 1 we have ϕ ≤ 3, since d ≥ 0. So four phase
coexistence with a single component is impossible.

(f) Yes! E is properly extensive and convex. One can derive E = pV = NbT , which is the ideal gas law
with k

B
replaced by b.

(d) Yes! The heat capacity at constant volume is CV =
( d̄Q
dT

)
V

= 15J/K. The heat capacity at constant

pressure is Cp =
( d̄Q
dT

)
p
= 10J/ 5

9K = 18J/K. Stability requires Cp > CV , which is satisfied.

(h) Yes! The only possible obstacle here is whether the engine’s efficiency is greater than that of the

corresponding Carnot cycle, for which η
C
= 1 − T1

T2
= 1

3 . We have η = W
Q2

and ∆S2 = −Q2

T2
. Thus,

η =W/
[
T2(−∆S2)

]
= 300 J/

[
(600K)(2.00 J/K)

]
= 1

4 < η
C

.
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(2.4) Using the chain rule from multivariable calculus (see §2.17 of the lecture notes), solve the following:

(a) Find (∂N/∂T )S,p in terms of T , N , S, and Cp,N .

(b) Experimentalists can measure CV,N but for many problems it is theoretically easier to work in the
grand canonical ensemble, whose natural variables are (T, V, µ). Show that

CV,N =

(
∂E

∂T

)

V,z

−
(
∂E

∂z

)

T,V

(
∂N

∂T

)

V,z

/(
∂N

∂z

)

T,V

,

where z = exp(µ/k
B
T ) is the fugacity.

Solution :

(a) We have (
∂N

∂T

)

S,p

=
∂(N,S, p)

∂(T, S, p)
=
∂(N,S, p)

∂(N,T, p)
· ∂(N,T, p)
∂(T, S, p)

= −
NCp,N

TS
.

(b) Using the chain rule,

CV,N =
∂(E,V,N)

∂(T, V,N)
=
∂(E,V,N)

∂(T, V, z)
· ∂(T, V, z)
∂(T, V,N)

=

[(
∂E

∂T

)

V,z

(
∂N

∂z

)

T,V

−
(
∂E

∂z

)

T,V

(
∂N

∂T

)

V,z

]
·
(
∂z

∂N

)

T,V

=

(
∂E

∂T

)

V,z

−
(
∂E

∂z

)

T,V

(
∂N

∂T

)

V,z

/(
∂N

∂z

)

T,V

.
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(2.5) The entropy of a thermodynamic system S(E,V,N) is given by

S(E,V,N) = r Eα V β Nγ ,

where r is a dimensionful constant.

(a) Extensivity of S imposes a condition on (α, β, γ). Find this constraint.

(b) Even with the extensivity condition satisfied, the system may violate one or more stability criteria.
Find the general conditions on (α, β, γ) which are thermodynamically permissible.

Solution :

(a) Clearly we must have α+ β + γ = 1 in order for S to be extensive.

(b) The Hessian is

Q =
∂2S

∂Xi ∂Xj

=



α(α− 1)S/E2 αβ S/EV αγ S/EN
αβ S/EV β(β − 1)S/V 2 βγ S/VN
αγ S/EN βγ S/VN γ(γ − 1)S/N2


 .

As shown in the notes, for any 2 × 2 submatrix of Q, obtained by eliminating a single row and its

corresponding column, and written

(
a b
b c

)
, we must have a < 0, c < 0, and ac > b2. For example, if

we take the upper left 2× 2 submatrix, obtained by eliminating the third row and third column of Q, we
have a = α(α − 1)S/E2, b = αβ S/EV , and c = β(β − 1)S/V 2. The condition a < 0 requires α ∈ (0, 1).
Similarly, b < 0 requires β ∈ (0, 1). Finally, ac > b2 requires α + β < 1. Since α + β + γ = 1, this last
condition requires γ > 0. Obviously we must have γ < 1 as well, else either α or β would have to be
negative. An examination of either of the other two submatrices yields the same conclusions. Thus,

α ∈ (0, 1) , β ∈ (0, 1) , γ ∈ (0, 1) .
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(2.6) Consider the equation of state,

p =
R2T 2

a+ vRT
,

where v = N
A
V/N is the molar volume and a is a constant.

(a) Find an expression for the molar energy ε(T, v). Assume that in the limit v → ∞, where the ideal
gas law pv = RT holds, that the gas is ideal with ε(v → ∞, T ) = 1

2fRT .

(b) Find the molar specific heat cV,N .

Solution :

(a) We fix N throughout the analysis. As shown in §2.11.2 of the lecture notes,
(
∂E

∂V

)

T,N

= T

(
∂p

∂T

)

V,N

− p .

Defining the molar energy ε = E/ν = N
A
E/N and the molar volume v = V/ν = N

A
V/N , we can write

the above equation as (
∂ε

∂v

)

T

= T

(
∂p

∂T

)

v

− p = p

[(
∂ ln p

∂ lnT

)

v

− 1

]
.

Now from the equation of state, we have

ln p = 2 ln T − ln(a+ vRT ) + 2 lnR ,

hence (
∂ ln p

∂ lnT

)

v

= 2− vRT

a+ vRT
.

Plugging this into our formula for
(
∂ε
∂v

)
T

, we have
(
∂ε

∂v

)

T

=
a p

a+ vRT
=

aR2T 2

(a+ vRT )2
.

Now we integrate with respect to v at fixed T , using the method of partial fractions. After some grinding,
we arrive at

ε(T, v) = ω(T )− aRT

(a+ vRT )
.

In the limit v → ∞, the second term on the RHS tends to zero. This is the ideal gas limit, hence we must
have ω(T ) = 1

2fRT , where f = 3 for a monatomic gas, f = 5 for diatomic, etc. Thus,

ε(T, v) = 1
2fRT − aRT

a+ vRT
= 1

2fRT − a

v
+

a2

v(a+ vRT )
.

(b) To find the molar specific heat, we compute

cV,N =

(
∂ε

∂T

)

v

= 1
2fR− a2R

(a+ vRT )2
.
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(2.7) A diatomic gas obeys the equation of state

p =
RT

v − b
− a

v2
+
cRT

v3
,

where a, b, and c are constants.

(a) Find the adiabatic equation of state relating temperature T and molar volume v.

(b) What is the internal energy per mole, ε(T, v)?

(c) What is the Helmholtz free energy per mole, f(T, v)?

Solution :

(a) Let ε be the molar internal energy and v the molar volume. We have already shown (see Lecture
Notes, §2.11.2) (

∂ε

∂v

)

T

= T

(
∂p

∂T

)

v

− p .

Thus, for our system, (
∂ε

∂v

)

T

=
a

v2
⇒ ε(T, v) = 5

2RT − a

v
,

where the first term is the result for the rarefied limit v → ∞, where the gas presumably becomes ideal.
Now if s = S/ν is the molar entropy (ν = N/NA is the number of moles), then

T ds = dε+ p dv = 5
2RdT +RT

dv

v − b
+ cRT

dv

v3
.

Dividing by T and then integrating, we have

s(T, v) = R ln
[
T 5/2(v − b) e−c/2v2

]
+ const. .

Thus, the equation of the adiabat is

T 5/2(v − b) e−c/2v2 = const.

(b) We have already obtained the result

ε(T, v) = 5
2RT − a

v
.

(c) From f = ε− Ts, where f = F/ν is the Helmholtz free energy per mole, we have

f(T, v) = 5
2RT − a

v
− 5

2RT ln

(
bRT

a

)
−RT ln

(
v − b

b

)
+
cRT

2v2
− Ts0 .

Here we have inserted constants with the proper dimensions in order to render our expression for f
with the appropriate dimensions. Thus, the constant s0 has dimensions of J/mol ·K, the same as the gas
constantR. Since c/b2 is dimensionless, there is more than one way to do this. Any resulting differences
will show up in a different expression for s0.
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(2.8) A van der Waals gas undergoes an adiabatic free expansion from initial volume Vi to final volume
Vf . The equation of state is given in §2.11.3 of the lecture notes. The number of particles N is held
constant.

(a) If the initial temperature is Ti, what is the final temperature Tf?

(b) Find an expression for the change in entropy ∆S of the gas.

Solution :

(a) This part is done for you in §2.10.5 of the notes. One finds

∆T = Tf − Ti =
2a

fR

(
1

vf
− 1

vi

)
.

(b) Consider a two-legged thermodynamic path, consisting first of a straight leg from (Ti, Vi) to (Ti, Vf),
and second of a straight leg from (Ti, Vf) to (Tf , Vf). We then have

∆S =

∆S1︷ ︸︸ ︷
V
f∫

V
i

dV

(
∂S

∂V

)

T
i
,N

+

∆S2︷ ︸︸ ︷
T
f∫

T
i

dT

(
∂S

∂T

)

V
f
,N

.

Along the first leg we use (
∂S

∂V

)

T,N

=

(
∂p

∂T

)

V,N

=
R

v − b

and we then find

∆S1 = R ln

(
vf − b

vi − b

)
.

Along the second leg, we have

∆S2 =

T
f∫

T
i

dT

(
∂S

∂T

)

V
f
,N

=

T
f∫

T
i

dT
CV

f
,N

T
= 1

2fR

T
f∫

T
i

dT

T
= 1

2fR ln

(
Tf
Ti

)
.

Thus,

∆S = R ln

(
vf − b

vi − b

)
+ 1

2fR ln

[
1 +

2a

fRTi

(
1

vf
− 1

vi

)]
.
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(2.9) Recall that a van der Waals gas obeys the equation of state

(
p+

a

v2

)(
v − b

)
= RT ,

where v is the molar volume. We showed that the energy per mole of such a gas is given by

ε(T, v) = 1
2fRT − a

v
,

where T is temperature and f is the number of degrees of freedom per particle.

(a) For an ideal gas, the adiabatic equation of state is v T f/2 = const. Find the adiabatic equation of state
(at fixed particle number) for the van der Waals gas.

(b) One mole of a van der Waals gas is used as the working substance in a Carnot engine (see Fig. 1).
Find the molar volume at vC in terms of vB , T1 , T2 , and constants.

(c) Find the heat QAB absorbed by the gas from the upper reservoir.

(d) Find the work done per cycle, Wcyc. Hint: you only need to know QAB and the cycle efficiency η.

Solution :

(a) We have

0 = T ds = dε+ p dv

= 1
2fR dT +

(
p+

a

v2

)
dv

= 1
2fR dT +

RT dv

v − b
= 1

2fRT d ln
[
(v − b)T f/2

]
,

where s = N
A
S/N is the molar entropy. Thus, the adiabatic equation of state for the van der Waals gas

is

ds = 0 ⇒ (v − b)T f/2 = const.

Setting b = 0, we recover the ideal gas result.

(b) Since BC is an adiabat, we have

(vB − b)T
f/2
2 = (vC − b)T

f/2
1 ⇒ vC = b+ (vB − b)

(
T2
T1

)f/2
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(c) We have, from the First Law,

QAB = EB − EA +WAB

= ν

(
a

vA
− a

vB

)
+ ν

v
B∫

v
A

dv p

= ν

(
a

vA
− a

vB

)
+ ν

v
B∫

v
A

dv

[
RT2
v − b

− a

v2

]
,

hence

QAB = νRT2 ln

(
vB − b

vA − b

)

with ν = 1.

(d) Since the cycle is reversible, we must have

η =
Wcyc

QAB

⇒ Wcyc = νR(T2 − T1) ln

(
vB − b

vA − b

)
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(2.10) The triple point of a single component thermodynamic system is an isolated point (Tt, pt) in the
(T, p) plane where there is three phase coexistence between solid, liquid, and vapor. Consider three
phase coexistence between a pure solid, a pure vapor, and a solution where the solute fraction is x. Find
the shift (∆Tt,∆pt) as a function of x, Tt , and the quantities s

S,L,V and v
S,L,V , i.e. the molar entropies and

volumes of the three respective phases.

Solution :

At the triple point, we have µ
S
(Tt, pt) = µ

L
(Tt, pt) = µ

V
(Tt, pt), which gives two equations for the two

unknowns Tt and pt. We write Tt = T 0
t +∆T and pt = p0t +∆p, and we solve

µ0
L
(T 0

t +∆T, p0t +∆p)− xk
B
(T 0

t +∆T ) = µ0
V
(T 0

t +∆T, p0t +∆p)

µ0
V
(T 0

t +∆T, p0t +∆p) = µ0
S
(T 0

t +∆T, p0t +∆p) ,

where the 0 superscript indicates the value for a pure phase. We now expand in the notionally small
quantities ∆T and ∆p, and we use

(
∂µ

∂T

)

p,N

= −
(
∂S

∂N

)

p,T

= − s

N
A

,

(
∂µ

∂p

)

T,N

=

(
∂V

∂N

)

p,T

=
v

N
A

,

where s and v are the molar entropy and molar volume, respectively. This yields the linear system,

(
s
V
− s

L
v
L
− v

V

s
S
− s

V
v
V
− v

S

)(
∆T
∆p

)
=

(
xRT 0

t

0

)
.

This yields

∆T =
(v

V
− v

S
) · xRT 0

t

s
V
(v

L
− v

S
) + s

L
(v

S
− v

V
) + s

S
(v

V
− v

L
)

∆p =
(s

V
− s

S
) · xRT 0

t

s
V
(v

L
− v

S
) + s

L
(v

S
− v

V
) + s

S
(v

V
− v

L
)

.

Note that we do not retain terms of order x∆T , because we have assumed x is small, i.e. a weak solution.
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(2.11) A grocer starts his day with 4 boxes of pears, 5 boxes of oranges, and 6 boxes of apples. Each box
contains 24 fruit and is initially completely filled.

(a) At some time, the grocer notes that exactly half the pears, a third of the oranges, and a quarter of
the apples have been sold. Assuming that customers take fruit from random positions in each of
the boxes, find the dimensionless entropy lnW of the fruit distribution.

(b) A clumsy customer then topples the table on which the fruit boxes rest, and all the fruit fall to
the ground. The customer cleans up the mess, putting all the fruit back into the boxes, but into
random locations. What is the entropy of the final state?

Solution :

(a) The grocer starts with 96 pears, 120 oranges, and 144 apples. By the time the grocer checks, 48 pears,
40 oranges, and 36 apples have been removed. The number of ways of doing this is

W =

(
96

48

)(
120

40

)(
144

36

)
= 8.303 × 1093 .

Thus, lnW = 216.3.

(b) There are a total of 96+ 120+ 144 = 360 slots for the fruit, which contain the remaining 48 pears, 120
oranges, and 108 apples. The rest of the slots, which amount to 360 − 48 − 120 − 108 = 84 in total, are
empty. Therefore,

W ′ =
360!

84! · 48! · 120! · 108! = 1.093 × 10205 ,

and the dimensionless entropy is lnW ′ = 472.1.
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(2.12) In a chemical reaction among σ species,

ζ1 A1 + ζ2A2 + · · ·+ ζσ Aσ = 0 ,

where Aa is a chemical formula and ζa is a stoichiometric coefficient. When ζa > 0, the corresponding
Aa is a product; when ζa < 0, Aa is a reactant. (See §2.13.1 of the Lecture Notes.) The condition for
equilibrium is

σ∑

a=1

ζa µa = 0 ,

where µa is the chemical potential of the ath species. The equilibrium constant for the reaction is defined
as

κ(T, p) =
σ∏

a=1

xζaa ,

where xa = na
/∑σ

b=1 nb is the fraction of species a.

(a) Working in the grand canonical ensemble, show that

κ(T, p) =

σ∏

a=1

(
k
B
T ξa(T )

pλ3a

)ζa
.

Note that the above expression does not involve any of the chemical potentials µa.

(b) Compute the equilibrium constant κ(T, p) for the dissociative reaction N2 ⇋ 2N at T = 5000K,
assuming the following: the characteristic temperature of rotation and that of vibration of the N2

molecule are Θrot = 2.84K and Θvib = 3350K. The dissociation energy, including zero point
contributions, is ∆ = 169.3 kcal mol−1. The electronic ground state of N2 has no degeneracy, but
that of the N atom is 4 due to electronic spin.

Solution :

(a) In the GCE, we have

Ω
(
T, V, {µa}

)
= −k

B
T V

σ∑

a=1

λ−3
a eµa/kBT ξa ,

where λa = (2π~2/makB
T )1/2 the thermal wavelength for species a and ξa(T ) is the internal coordinate

partition function for species a. We then have

na = − 1

V

(
∂Ω

∂µa

)

T,V,µb6=a

= za λ
−3
a ξa ,

where za = eµa/kBT . OK, so we now define

xa =
na∑σ
b=1 nb

=
zaλ

−3
a ξa

p/k
B
T

=
k
B
T ξa za
p λ3a

,
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since
∑

b nb = −Ω/V k
B
T = p/k

B
T . (Remember Ω = −pV ). Therefore

κ(T, p) ≡
σ∏

a=1

xζaa

=

σ∏

a=1

(
k
B
T ξa
pλ3a

)ζa
·

σ∏

a=1

zζaa .

However,
σ∏

a=1

zζaa =

σ∏

a=1

eζaµa/kBT = exp

(
1

k
B
T

σ∑

a=1

ζa µa

)
= 1 ,

since
∑σ

a=1 ζa µa = 0.

(b) The internal partition function for N is just ξN = (2S + 1)(2I + 1), where S = 3
2 is the total electronic

spin from Hund’s rules, and I = 1 is the nuclear spin. It turns out that we will never need to know the
value of I . For N2 the internal partition function is

ξN2
= (2I + 1)2 · T

2Θrot

· e∆/T

1− e−Θ
vib

/T
.

This formula requires some explanation. We appeal to Eqs. 4.292 in the Lecture Notes. Since T ≫ Θrot,
we have

ζg ≈ ζu ≈ 1
2

∞∫

0

du e−uΘrot/T =
T

2Θrot

,

where the factor of 1
2 comes from summing only over half the allowed L values, i.e. either all even or

all odd, and where u = L(L + 1) so du = (2L + 1) dL. We then have ξrot = (2I + 1)2T/2Θrot because
gg+gu = (2I+1)2. The vibrational partition function was derived to be ξvib = 1

2 csch (Θvib/2T ), however

since we are including the zero point vibrational energy 1
2~ωvib = 1

2kB
Θvib in the dissociation energy, we

get the above expression for ξN2
. According to our result from part (a), we have

κ(T, p) = 32k
B
Θrot · e−∆/T ·

(
1− e−Θ

vib
/T
)
·
λ3N

2

pλ6N

= 16
√
2 · kB

Θrot

pλ3N
· e−∆/T ·

(
1− e−Θ

vib
/T
)

.

Now we need to evaluate some quantities. The gas constant is

R = N
A
k
B
= 8.314 J/mol ·K = 1.986 × 10−3 kcal/mol ·K ,

hence at T = 5000K, we have

∆

k
B
T

=
(169.3 kcal/mol)(4184 J/kcal)

(8.314 J/mol ·K)(5000K)
= 17.0 .

Furthermore,Θvib/T = 0.670. The thermal wavelength of N at this temperature is found to be

λN =

(
2π · (1.055 × 10−27 g cm2/s)2

(14 g/6.02 × 1023) · (1.38 × 10−16 erg/K) · 5000K

)1/2
= 6.60 Å .
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We also have
k
B
Θrot

pλ3N
=

(1.38 × 10−16 erg/K) · (2.84K)

(1.013 × 106 g/cm · s2)(6.60 × 10−8 cm)3
· p0
p

=
1.35 p0
p

,

where p0 = 1.013 × 105 Pa is atmospheric pressure. Putting it all together, we obtain

κ(T = 5000K, p) = 6.2× 10−7 · p0
p

.
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(2.13) The phase diagram for a binary eutectic system is depicted in Fig. 10. The liquid phase is com-
pletely miscible, but the solid phase separates into A-rich α and B-rich β phases over a broad range of
temperatures and compositions. There is a single chemical composition which solidifies at a tempera-
ture lower than any other for this system - the eutectic composition. You are invited to model such a
system using the Gibbs free energy densities

gL(T, p, x) = (1− x)µAL (T, p) + xµBL (T, p) + k
B
T
[
x lnx+ (1− x) ln(1− x)

]
+ λL x(1− x)

gS(T, p, x) = (1− x)µAS (T, p) + xµBS (T, p) + k
B
T
[
x lnx+ (1− x) ln(1− x)

]
+ λS x(1− x) ,

Figure 10: Eutectic phase diagram (from
Wikipedia). L denotes the liquid phase, and α
and β are two solid phases.

where λL < 0 and λS > 0. For simplicity, you may as-
sume

µAL (T, p) ≈ µBL (T, p) ≡ µL(T, p)

µAS (T, p) ≈ µBS (T, p) ≡ µS(T, p) ,

with µS(T, p) = µL(T, p) + rk
B
(T − T0), where r > 0.

(a) By sketching the free energies, show that the phase
diagram is as shown in Fig. 10.

(b) Solve numerically for the eutectic temperature as-
suming λL = −1, λS = +1, and k

B
T0 = 1, and r = 0.8.

Solution :

Figure 11: Gibbs free energies for liquid
(blue) and solid (red) phases at different
temperatures, with Maxwell constructions
shown.

(a) A set of curves illustrating the phenomenon is shown in
Fig. 11. We have taken the valus in part (b) of the problem
and varied the quantity k

B
T (in dimensionless units). For our

system, both the liquid and solid free energies are symmetric
in x about the point x = 1

2 . At high temperatures, gL < gS
for all x, as shown in the upper left panel of Fig. 11. As
the temperature is lowered, gS starts to dip below gL at the
endpoints x = 0, 1. For our model and parameters, this hap-
pens for k

B
T = k

B
T0 = 1. Because λL > λS, the curvature

of gL(x) is greater than that of gS(x), which means that ini-
tially there will be two intersections where gL(x) = gS(x), at
x = x∗ < 1

2 and x = 1− x∗ > 1
2 . To guarantee thermodynam-

ics stability, one must invoke the Maxwell construction which
connects the solid curve at some point x1 < x∗ to the liquid
curve at point x2 > x∗, with x2 <

1
2 . A similar construction

follows on the second half of the curve, between gL(1 − x2)
and gS(1 − x1). These two phase regions represent mixtures
of the liquid at intermediate concentration and a low or high
concentration solid phase. Furthering lower the temperature,
the solid curve develops a negative curvature at x = 1

2 for k
B
T < 1

2λS. Eventually, the temperature gets
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so low that gS(x) lies below gL(x) for all x ∈ [0, 1]. The system is then in the solid phase, but one must
nevertheless invoke a Maxwell construction, as shown in the lower left panel in Fig. 11, between a
low-concentration solid at x = x3 < 1

2 and a high-concentration solid at x = 1 − x3 > 1
2 . At such

temperatures, the solid is in a homogeneous phase for x < x3 or x > 1 − x3 , and in a mixed phase for
x3 < x < 1− x3.

Figure 12: Gibbs free energies for the liquid
(blue) and solid (red) phases at the eutectic
temperature.

(b) A crude numerical experiment is performed by succes-
sively lowering k

B
T until the minima of the gL(x) and gS(x)

curves cross, and then iterating to find the temperature where
the minima coincide. In this manner, I find a eutectic temper-
ature k

B
Te = 0.3948, as shown in Fig. 12.
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0.3 Approach to Equilibrium

(3.1) Consider the matrix

M =

(
4 4
−1 9

)
.

(a) Find the characteristic polynomial P (λ) = det(λI −M)
and the eigenvalues.

(b) For each eigenvalue λα, find the associated right eigen-
vector Rα

i and left eigenvector Lα
i . Normalize your

eigenvectors so that 〈Lα |Rβ 〉 = δαβ .

(c) Show explicitly that Mij =
∑

α λαR
α
i L

α
j .

Solution :

(a) The characteristic polynomial is

P (λ) = det

(
λ− 4 −4
1 λ− 9

)
= λ2 − 13λ+ 40 = (λ− 5)(λ − 8) ,

so the two eigenvalues are λ1 = 5 and λ2 = 8.

(b) Let us write the right eigenvectors as ~Rα =

(
Rα

1

Rα
2

)
and the left eigenvectors as ~Lα =

(
Lα
1 Lα

2

)
.

Having found the eigenvalues, we only need to solve four equations:

4R1
1 + 4R1

2 = 5R1
1 , 4R2

1 + 4R2
2 = 8R2

1 , 4L1
1 − L1

2 = 5L1
1 , 4L2

1 − L2
2 = 8L2

1 .

We are free to choose Rα
1 = 1 when possible. We must also satisfy the normalizations 〈Lα |Rβ 〉 =

Lα
i R

β
i = δαβ . We then find

~R1 =

(
1
1
4

)
, ~R2 =

(
1
1

)
, ~L1 =

(
4
3 −4

3

)
, ~L2 =

(
−1

3
4
3

)
.

(c) The projectors onto the two eigendirections are

P1 = |R1 〉〈L1 | =




4
3 −4

3

1
3 −1

3


 , P2 = |R2 〉〈L2 | =



−1

3
4
3

−1
3

4
3


 .

Note that P1 + P2 = I. Now construct

λ1 P1 + λ2 P2 =

(
4 4
−1 9

)
,

as expected.
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(3.2) Consider a three-state system with the following transition rates:

W12 = 0 , W21 = γ , W23 = 0 , W32 = 3γ , W13 = γ , W31 = γ .

(a) Find the matrix Γ such that Ṗi = −ΓijPj .

(b) Find the equilibrium distribution P eq
i .

(c) Does this system satisfy detailed balance? Why or why not?

Solution :

(a) Following the prescription in Eq. 3.3 of the Lecture Notes, we have

Γ = γ




2 0 −1
−1 3 0
−1 −3 1


 .

(b) Note that summing on the row index yields
∑

i Γij = 0 for any j, hence (1, 1, 1) is a left eigenvector

of Γ with eigenvalue zero. It is quite simple to find the corresponding right eigenvector. Writing ~ψ t =
(a, b, c), we obtain the equations c = 2a, a = 3b, and a+ 3b = c, the solution of which, with a+ b+ c = 1
for normalization, is a = 3

10 , b = 1
10 , and c = 6

10 . Thus,

P eq =



0.3
0.1
0.6


 .

(c) The equilibrium distribution does not satisfy detailed balance. Consider for example the ratio P eq
1 /P eq

2 =
3. According to detailed balance, this should be the same as W12/W21, which is zero for the given set of
transition rates.
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(3.3) A Markov chain is a process which describes transitions of a discrete stochastic variable occurring at
discrete times. Let Pi(t) be the probability that the system is in state i at time t. The evolution equation
is

Pi(t+ 1) =
∑

j

Qij Pj(t) .

The transition matrix Qij satisfies
∑

iQij = 1 so that the total probability
∑

i Pi(t) is conserved. The
element Qij is the conditional probability that for the system to evolve to state i at time t+ 1 given that it
was in state j at time t. Now consider a group of Physics graduate students consisting of three theorists
and four experimentalists. Within each group, the students are to be regarded as indistinguishable.
Together, the students rent two apartments, A and B. Initially the three theorists live in A and the four
experimentalists live in B. Each month, a random occupant of A and a random occupant of B exchange
domiciles. Compute the transition matrix Qij for this Markov chain, and compute the average fraction
of the time that B contains two theorists and two experimentalists, averaged over the effectively infinite
time it takes the students to get their degrees. Hint: Q is a 4× 4 matrix.

Solution:

There are four states available, and they are listed together with their degeneracies in Table 2.

| j 〉 room A room B gA

j gB

j gTOT

j

| 1 〉 TTT EEEE 1 1 1

| 2 〉 TTE EEET 3 4 12

| 3 〉 TEE EETT 3 6 18

| 4 〉 EEE ETTT 1 4 4

Table 3: States and their degeneracies.

Let’s compute the transition probabilities. First, we compute the transition probabilities out of state | 1 〉,
i.e. the matrix elementsQj1. ClearlyQ21 = 1 since we must exchange a theorist (T) for an experimentalist
(E). All the other probabilities are zero: Q11 = Q31 = Q41 = 0. For transitions out of state | 2 〉, the
nonzero elements are

Q12 =
1
4 × 1

3 = 1
12 , Q22 =

3
4 × 1

3 + 1
4 × 2

3 = 5
12 , Q32 =

1
2 .

To computeQ12, we must choose the experimentalist from room A (probability 1
3 ) with the theorist from

room B (probability 1
4 ). For Q22, we can either choose E from A and one of the E’s from B, or one of the

T’s from A and the T from B. This explains the intermediate steps written above. For transitions out of
state | 3 〉, the nonzero elements are then

Q23 =
1
3 , Q33 =

1
2 , Q43 =

1
6 .

Finally, for transitions out of state | 4 〉, the nonzero elements are

Q34 =
3
4 , Q44 =

1
4 .
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The full transition matrix is then

Q =




0 1
12 0 0

1 5
12

1
3 0

0 1
2

1
2

3
4

0 0 1
6

1
4




.

Note that
∑

iQij = 1 for all j = 1, 2, 3, 4. This guarantees that φ(1) = (1 , 1 , 1 , 1) is a left eigenvector

of Q with eigenvalue 1. The corresponding right eigenvector is obtained by setting Qij ψ
(1)
j = ψ

(1)
i .

Simultaneously solving these four equations and normalizing so that
∑

j ψ
(1)
j = 1, we easily obtain

ψ(1) =
1

35




1
12
18
4


 .

This is the state we converge to after repeated application of the transition matrix Q. If we decompose
Q =

∑4
α=1 λα |ψ(α) 〉〈φ(α) |, then in the limit t → ∞ we have Qt ≈ |ψ(1) 〉〈φ(1) |, where λ1 = 1, since

the remaining eigenvalues are all less than 1 in magnitude5. Thus, Qt acts as a projector onto the state
|ψ(1) 〉. Whatever the initial set of probabilities Pj(t = 0), we must have 〈φ(1) |P (0) 〉 =

∑
j Pj(0) = 1.

Therefore, limt→∞ Pj(t) = ψ
(1)
j , and we find P3(∞) = 18

35 . Note that the equilibrium distribution satisfies
detailed balance:

ψ
(1)
j =

gTOT

j∑
l g

TOT

l

.

5One can check that λ1 = 1, λ2 = 5

12
, λ3 = −

1

4
. and λ4 = 0.
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(3.4) Suppose I have three bags containing among them four coins. Initially, bag #1 contains a quarter,
bag #2 contains a dime, and bag #3 contains two nickels. At each time step, I choose two bags randomly
and randomly exchange one coin from each bag. The time evolution satisfies Pi(t + 1) =

∑
j Qij Pj(t),

where Qij is the conditional probability Qij = P (i , t+ 1 | j , t) that the system is in state i at time t+ 1
given that it was in state j at time t.

(a) How many configurations are there for this system?

(b) Construct the transition matrix Qij and verify that
∑

iQij = 1.

(c) Find the eigenvalues of Q (you may want to use something like Mathematica).

(d) Find the equilibrium distribution P eq
i .

Solution :

(a) There are seven possible configurations for this system, shown in Table 4 below.

1 2 3 4 5 6 7

bag 1 Q Q D D N N N

bag 2 D N Q N Q D N

bag 3 NN DN NN QN DN QN DQ

g 1 2 1 2 2 2 2

Table 4: Configurations and their degeneracies for problem 3.

(b) The transition matrix is

Q =




0 1
6

1
3 0 0 1

6 0

1
3

1
6 0 1

6
1
3 0 1

6

1
3 0 0 1

6
1
6 0 0

0 1
6

1
3

1
6 0 1

3
1
6

0 1
3

1
3 0 1

6
1
6

1
6

1
3 0 0 1

3
1
6

1
6

1
6

0 1
6 0 1

6
1
6

1
6

1
3




(c) Interrogating Mathematica, I find the eigenvalues are

λ1 = 1 , λ2 = −2
3 , λ3 =

1
3 , λ4 =

1
3 , λ5 = λ6 = λ7 = 0 .
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(d) We may decomposeQ into its left and right eigenvectors, writing

Q =

7∑

a=1

λa |Ra 〉〈La |

Qij =

7∑

a=1

λaR
a
i L

a
j

The full matrix of left (row) eigenvectors is

L =




1 1 1 1 1 1 1
−2 1 2 −1 −1 1 0
−1 0 −1 0 0 0 1
0 −1 0 1 −1 1 0
1 −1 1 −1 0 0 1
1 0 −1 −1 0 1 0
−1 −1 1 0 1 0 0




The corresponding matrix of right (column) eigenvectors is

R =
1

24




2 −3 −6 0 4 1 −5
4 3 0 −6 −4 −1 −7
2 3 −6 0 4 −5 1
4 −3 0 6 −4 −7 −1
4 −3 0 −6 −4 5 11
4 3 0 6 −4 11 5
4 0 12 0 8 −4 −4




Thus, we have RL = LR = I, i.e. R = L−1, and

Q = RΛL ,

with Λ = diag
(
1 , −2

3 ,
1
3 ,

1
3 , 0 , 0 , 0

)
.

The right eigenvector corresponding to the λ = 1 eigenvalue is the equilibrium distribution. We there-
fore read off the first column of the R matrix:

(P eq)t =
(

1
12

1
6

1
12

1
6

1
6

1
6

1
6

)
.

Note that

P eq
i =

gi∑
j gj

,

where gj is the degeneracy of state j (see Tab. 2). Why is this so? It is because our random choices
guarantee that Qij gj = Qji gi for each i and j (i.e. no sum on repeated indices). Now sum this equation
on j, and use

∑
j Qji = 1. We obtain

∑
j Qij gj = gi , which says that the | g 〉 is a right eigenvector of

Q with eigenvalue 1. To obtain the equilibrium probability distribution, we just have to normalize by
dividing by

∑
j gj .
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(3.5) A ball of mass m executes perfect one-dimensional motion along the symmetry axis of a piston.
Above the ball lies a mobile piston head of mass M which slides frictionlessly inside the piston. Both
the ball and piston head execute ballistic motion, with two types of collision possible: (i) the ball may
bounce off the floor, which is assumed to be infinitely massive and fixed in space, and (ii) the ball and
piston head may engage in a one-dimensional elastic collision. The Hamiltonian is

H =
P 2

2M
+

p2

2m
+MgX +mgx ,

where X is the height of the piston head and x the height of the ball. Another quantity is conserved by
the dynamics: Θ(X − x). I.e., the ball always is below the piston head.

(a) Choose an arbitrary length scale L, and then energy scale E0 = MgL, momentum scale P0 =
M

√
gL, and time scale τ0 =

√
L/g. Show that the dimensionless Hamiltonian becomes

H̄ = 1
2 P̄

2 + X̄ +
p̄2

2r
+ rx̄ ,

with r = m/M , and with equations of motion dX/dt = ∂H̄/∂P̄ , etc. (Here the bar indicates di-
mensionless variables: P̄ = P/P0, t̄ = t/τ0, etc.) What special dynamical consequences hold for
r = 1?

(b) Compute the microcanonical average piston height 〈X〉. The analogous dynamical average is

〈X〉T = lim
T→∞

1

T

T∫

0

dtX(t) .

When computing microcanonical averages, it is helpful to use the Laplace transform, discussed
toward the end of §3.3 of the notes. (It is possible to compute the microcanonical average by more
brute force methods as well.)

(c) Compute the microcanonical average of the rate of collisions between the ball and the floor. Show
that this is given by

〈∑

i

δ(t− ti)
〉
=
〈
Θ(v) v δ(x− 0+)

〉
.

The analogous dynamical average is

〈γ〉T = lim
T→∞

1

T

T∫

0

dt
∑

i

δ(t− ti) ,

where {ti} is the set of times at which the ball hits the floor.

(d) How do your results change if you do not enforce the dynamical constraint X ≥ x?
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(e) Write a computer program to simulate this system. The only input should be the mass ratio r
(set Ē = 10 to fix the energy). You also may wish to input the initial conditions, or perhaps to
choose the initial conditions randomly (all satisfying energy conservation, of course!). Have your
program compute the microcanonical as well as dynamical averages in parts (b) and (c). Plot
out the Poincaré section of P vs. X for those times when the ball hits the floor. Investigate this for
several values of r. Just to show you that this is interesting, I’ve plotted some of my own numerical
results in fig. 13.
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Solution:

(a) Once we choose a length scale L (arbitrary), we may define E0 = M gL, P0 = M
√
gL, V0 =

√
gL,

and τ0 =
√
L/g as energy, momentum, velocity, and time scales, respectively, the result follows directly.

Rather than write P̄ = P/P0 etc., we will drop the bar notation and write

H = 1
2P

2 +X +
p2

2r
+ rx .

(b) What is missing from the Hamiltonian of course is the interaction potential between the ball and
the piston head. We assume that both objects are impenetrable, so the potential energy is infinite when
the two overlap. We further assume that the ball is a point particle (otherwise reset ground level to
minus the diameter of the ball). We can eliminate the interaction potential from H if we enforce that
each time X = x the ball and the piston head undergo an elastic collision. From energy and momentum
conservation, it is easy to derive the elastic collision formulae

P ′ =
1− r

1 + r
P +

2

1 + r
p

p′ =
2r

1 + r
P − 1− r

1 + r
p .

We can now answer the last question from part (a). When r = 1, we have that P ′ = p and p′ = P ,
i.e. the ball and piston simply exchange momenta. The problem is then equivalent to two identical
particles elastically bouncing off the bottom of the piston, and moving through each other as if they
were completely transparent. When the trajectories cross, however, the particles exchange identities.

Averages within the microcanonical ensemble are normally performed with respect to the phase space
distribution

̺(ϕ) =
δ
(
E −H(ϕ)

)

Tr δ
(
E −H(ϕ)

) ,

where ϕ = (P,X, p, x), and

Tr F (ϕ) =

∞∫

−∞

dP

∞∫

0

dX

∞∫

−∞

dp

∞∫

0

dx F (P,X, p, x) .

Since X ≥ x is a dynamical constraint, we should define an appropriately restricted microcanonical
average:

〈
F (ϕ)

〉
µce

≡ T̃r
[
F (ϕ) δ

(
E −H(ϕ)

)]/
T̃r δ

(
E −H(ϕ)

)

where

T̃rF (ϕ) ≡
∞∫

−∞

dP

∞∫

0

dX

∞∫

−∞

dp

X∫

0

dx F (P,X, p, x)
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Figure 13: Poincaré sections for the ball and piston head problem. Each color corresponds to a different
initial condition. When the mass ratio r = m/M exceeds unity, the system apparently becomes ergodic.

is the modified trace. Note that the integral over x has an upper limit of X rather than ∞, since the
region of phase space with x > X is dynamically inaccessible.

When computing the traces, we shall make use of the following result from the theory of Laplace trans-
forms. The Laplace transform of a function K(E) is

K̂(β) =

∞∫

0

dE K(E) e−βE .

The inverse Laplace transform is given by

K(E) =

c+i∞∫

c−i∞

dβ

2πi
K̂(β) eβE ,
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where the integration contour, which is a line extending from β = c− i∞ to β = c+ i∞, lies to the right

of any singularities of K̂(β) in the complex β-plane. For this problem, all we shall need is the following:

K(E) =
Et−1

Γ(t)
⇐⇒ K̂(β) = β−t .

For a proof, see §4.2.2 of the lecture notes.

We’re now ready to compute the microcanonical average of X. We have

〈X〉 = N(E)

D(E)
,

where

N(E) = T̃r
[
X δ(E −H)

]

D(E) = T̃r δ(E −H) .

Let’s first compute D(E). To do this, we compute the Laplace transform D̂(β):

D̂(β) = T̃r e−βH

=

∞∫

−∞

dP e−βP 2/2

∞∫

−∞

dp e−βp2/2r

∞∫

0

dX e−βX

X∫

0

dx e−βrx

=
2π

√
r

β

∞∫

0

dX e−βX

(
1− e−βrX

βr

)
=

√
r

1 + r
· 2π
β3

.

Similarly for N̂(β) we have

N̂(β) = T̃rX e−βH

=

∞∫

−∞

dP e−βP 2/2

∞∫

−∞

dp e−βp2/2r

∞∫

0

dX X e−βX

X∫

0

dx e−βrx

=
2π

√
r

β

∞∫

0

dX X e−βX

(
1− e−βrX

βr

)
=

(2 + r) r3/2

(1 + r)2
· 2π
β4

.

Taking the inverse Laplace transform, we then have

D(E) =

√
r

1 + r
· πE2 , N(E) =

(2 + r)
√
r

(1 + r)2
· 1
3πE

3 .

We then have

〈X〉 = N(E)

D(E)
=

(
2 + r

1 + r

)
· 1
3E .
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The ‘brute force’ evaluation of the integrals isn’t so bad either. We have

D(E) =

∞∫

−∞

dP

∞∫

0

dX

∞∫

−∞

dp

X∫

0

dx δ
(
1
2P

2 + 1
2rp

2 +X + rx− E
)

.

To evaluate, define P =
√
2ux and p =

√
2r uy . Then we have dP dp = 2

√
r dux duy and 1

2P
2 + 1

2r p
2 =

u2x + u2y. Now convert to 2D polar coordinates with w ≡ u2x + u2y. Thus,

D(E) = 2π
√
r

∞∫

0

dw

∞∫

0

dX

X∫

0

dx δ
(
w +X + rx− E

)

=
2π√
r

∞∫

0

dw

∞∫

0

dX

X∫

0

dx Θ(E −w −X)Θ(X + rX − E + w)

=
2π√
r

E∫

0

dw

E−w∫

E−w
1+r

dX =
2π

√
r

1 + r

E∫

0

dq q =

√
r

1 + r
· πE2 ,

with q = E − w. Similarly,

N(E) = 2π
√
r

∞∫

0

dw

∞∫

0

dX X

X∫

0

dx δ
(
w +X + rx− E

)

=
2π√
r

∞∫

0

dw

∞∫

0

dX X

X∫

0

dx Θ(E −w −X)Θ(X + rX − E + w)

=
2π√
r

E∫

0

dw

E−w∫

E−w
1+r

dX X =
2π√
r

E∫

0

dq

(
1− 1

(1 + r)2

)
· 1
2q

2 =

(
2 + r

1 + r

)
·

√
r

1 + r
· 1
3πE

3 .

(c) Using the general result

δ
(
F (x)−A

)
=
∑

i

δ(x− xi)∣∣F ′(xi)
∣∣ ,

where F (xi) = A, we recover the desired expression. We should be careful not to double count, so to
avoid this difficulty we can evaluate δ(t−t+i ), where t+i = ti+0+ is infinitesimally later than ti. The point
here is that when t = t+i we have p = r v > 0 (i.e. just after hitting the bottom). Similarly, at times t = t−i
we have p < 0 (i.e. just prior to hitting the bottom). Note v = p/r. Again we write γ(E) = N(E)/D(E),
this time with

N(E) = T̃r
[
Θ(p) r−1p δ(x − 0+) δ(E −H)

]
.



0.3. APPROACH TO EQUILIBRIUM 59

The Laplace transform is

N̂(β) =

∞∫

−∞

dP e−βP 2/2

∞∫

0

dp r−1 p e−βp2/2r

∞∫

0

dX e−βX

=

√
2π

β
· 1
β
· 1
β

=
√
2π β−5/2 .

Thus,

N(E) = 4
√
2

3 E3/2

and

〈γ〉 = N(E)

D(E)
= 4

√
2

3π

(
1 + r√
r

)
E−1/2 .

(d) When the constraint X ≥ x is removed, we integrate over all phase space. We then have

D̂(β) = Tr e−βH

=

∞∫

−∞

dP e−βP 2/2

∞∫

−∞

dp e−βp2/2r

∞∫

0

dX e−βX

∞∫

0

dx e−βrx =
2π

√
r

β3
.

For part (b) we would then have

N̂(β) = Tr X e−βH

=

∞∫

−∞

dP e−βP 2/2

∞∫

−∞

dp e−βp2/2r

∞∫

0

dX X e−βX

∞∫

0

dx e−βrx =
2π

√
r

β4
.

The respective inverse Laplace transforms are D(E) = π
√
r E2 and N(E) = 1

3π
√
r E3. The microcanon-

ical average of X would then be

〈X〉 = 1
3E .

Using the restricted phase space, we obtained a value which is greater than this by a factor of (2+r)/(1+
r). That the restricted average gives a larger value makes good sense, since X is not allowed to descend
below x in that case. For part (c), we would obtain the same result for N(E) since x = 0 in the average.
We would then obtain

〈γ〉 = 4
√
2

3π r−1/2E−1/2 .

The restricted microcanonical average yields a rate which is larger by a factor 1 + r. Again, it makes
good sense that the restricted average should yield a higher rate, since the ball is not allowed to attain a
height greater than the instantaneous value of X.

(e) It is straightforward to simulate the dynamics. So long as 0 < x(t) < X(t), we have

Ẋ = P , Ṗ = −1 , ẋ =
p

r
, ṗ = −r .
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Starting at an arbitrary time t0, these equations are integrated to yield

X(t) = X(t0) + P (t0) (t− t0)− 1
2(t− t0)

2

P (t) = P (t0)− (t− t0)

x(t) = x(t0) +
p(t0)

r
(t− t0)− 1

2(t− t0)
2

p(t) = p(t0)− r(t− t0) .

We must stop the evolution when one of two things happens. The first possibility is a bounce at t = tb,
meaning x(tb) = 0. The momentum p(t) changes discontinuously at the bounce, with p(t+b ) = −p(t−b ),
and where p(t−b ) < 0 necessarily. The second possibility is a collision at t = tc, meaning X(tc) = x(tc).
Integrating across the collision, we must conserve both energy and momentum. This means

P (t+c ) =
1− r

1 + r
P (t−c ) +

2

1 + r
p(t−c )

p(t+c ) =
2r

1 + r
P (t−c )−

1− r

1 + r
p(t−c ) .

r X(0) 〈X(t)〉 〈X〉µce 〈γ(t)〉 〈γ〉µce r X(0) 〈X(t)〉 〈X〉µce 〈γ(t)〉 〈γ〉µce
0.3 0.1 6.1743 5.8974 0.5283 0.4505 1.2 0.1 4.8509 4.8545 0.3816 0.3812

0.3 1.0 5.7303 5.8974 0.4170 0.4505 1.2 1.0 4.8479 4.8545 0.3811 0.3812

0.3 3.0 5.7876 5.8974 0.4217 0.4505 1.2 3.0 4.8493 4.8545 0.3813 0.3812

0.3 5.0 5.8231 5.8974 0.4228 0.4505 1.2 5.0 4.8482 4.8545 0.3813 0.3812

0.3 7.0 5.8227 5.8974 0.4228 0.4505 1.2 7.0 4.8472 4.8545 0.3808 0.3812

0.3 9.0 5.8016 5.8974 0.4234 0.4505 1.2 9.0 4.8466 4.8545 0.3808 0.3812

0.3 9.9 6.1539 5.8974 0.5249 0.4505 1.2 9.9 4.8444 4.8545 0.3807 0.3812

Table 5: Comparison of time averages and microcanonical ensemble averages for r = 0.3 and r = 1.2.
Initial conditions are P (0) = x(0) = 0, with X(0) given in the table and E = 10. Averages were
performed over a period extending for Nb = 107 bounces.

In the following tables I report on the results of numerical simulations, comparing dynamical averages
with (restricted) phase space averages within the microcanonical ensemble. For r = 0.3 the microcanon-
ical averages poorly approximate the dynamical averages, and the dynamical averages are dependent
on the initial conditions, indicating that the system is not ergodic. For r = 1.2, the agreement between
dynamical and microcanonical averages generally improves with averaging time. Indeed, it has been
shown by N. I. Chernov, Physica D 53, 233 (1991), building on the work of M. P. Wojtkowski, Comm.
Math. Phys. 126, 507 (1990) that this system is ergodic for r > 1. Wojtkowski also showed that this
system is equivalent to the wedge billiard, in which a single point particle of mass m bounces inside a
two-dimensional wedge-shaped region

{
(x, y)

∣∣ x ≥ 0 , y ≥ x ctn φ
}

for some fixed angle φ = tan−1
√

m
M .
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To see this, pass to relative (X ) and center-of-mass (Y) coordinates,

X = X − x Px =
mP −Mp

M +m

Y =
MX +mx

M +m
Py = P + p .

Then

H =
(M +m)P2

x

2Mm
+

P2
y

2(M +m)
+ (M +m) gY .

There are two constraints. One requires X ≥ x, i.e. X ≥ 0. The second requires x > 0, i.e.

x = Y − M

M +m
X ≥ 0 .

Figure 14: Long time running numerical averages Xav(t) ≡ t−1
∫ t
0 dt

′ X(t′) for r = 0.3 (top) and r = 1.2
(bottom), each for three different initial conditions, withE = 10 in all cases. Note how in the r = 0.3 case
the long time average is dependent on the initial condition, while the r = 1.2 case is ergodic and hence
independent of initial conditions. The dashed black line shows the restricted microcanonical average,

〈X〉µce = (2+r)
(1+r) · 1

3E.



62 LIST OF FIGURES

Now define x ≡ X , px ≡ Px, and rescale y ≡ M+m√
Mm

Y and py ≡
√
Mm

M+m Py to obtain

H =
1

2µ

(
p2x + p2y

)
+M g y

with µ = Mm
M+m the familiar reduced mass and M =

√
Mm. The constraints are then x ≥ 0 and y ≥

√
M
m x.

r X(0) Nb 〈X(t)〉 〈X〉µce 〈γ(t)〉 〈γ〉µce
1.2 7.0 104 4.8054892 4.8484848 0.37560388 0.38118510

1.2 7.0 105 4.8436969 4.8484848 0.38120356 0.38118510

1.2 7.0 106 4.8479414 4.8484848 0.38122778 0.38118510

1.2 7.0 107 4.8471686 4.8484848 0.38083749 0.38118510

1.2 7.0 108 4.8485825 4.8484848 0.38116282 0.38118510

1.2 7.0 109 4.8486682 4.8484848 0.38120259 0.38118510

1.2 1.0 109 4.8485381 4.8484848 0.38118069 0.38118510

1.2 9.9 109 4.8484886 4.8484848 0.38116295 0.38118510

Table 6: Comparison of time averages and microcanonical ensemble averages for r = 1.2, with Nb

ranging from 104 to 109.
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(3.6) Consider a toroidal phase space (x, p) ∈ T2. You can describe the torus as a square [0, 1] × [0, 1]
with opposite sides identified. Design your own modified Arnold cat map acting on this phase space,
i.e. a 2× 2 matrix with integer coefficients and determinant 1.

(a) Start with an initial distribution localized around the center – say a disc centered at (12 ,
1
2). Show

how these initial conditions evolve under your map. Can you tell whether your dynamics are
mixing?

(b) Now take a pixelated image. For reasons discussed in the lecture notes, this image should exhibit
Poincaré recurrence. Can you see this happening?

Solution :

(a) Any map

(
x′

p′

)
=

M︷ ︸︸ ︷(
a b
c d

) (
x
p

)
,

will do, provided a, b, c, d ∈ Z and detM = ad − bc = 1. Such matrices are said to be elements of the

modular group: M ∈ SL(2,Z). Arnold’s cat map M =

(
1 1
1 2

)
and its generalizations M =

(
1 1
p p+ 1

)

are modular transformations. Starting from an initial square distribution, we iterate the map up to three
times and show the results in Fig. 15. The numerical results are consistent with a mixing flow. (With
just a few further interations, almost the entire torus is covered.)

(c) A pixelated image exhibits Poincaré recurrence, as we see in Fig. 16.
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(3.7) Consider a modified version of the Kac ring model where each spin exists in one of three states: A,
B, or C. The flippers rotate the internal states cyclically: A→B→C→A.

(a) What is the Poincaré recurrence time for this system? Hint: the answer depends on whether or not
the total number of flippers is a multiple of 3.

(b) Simulate the system numerically. Choose a ring size on the order of N = 10, 000 and investigate
a few flipper densities: x = 0.001, x = 0.01, x = 0.1, x = 0.99. Remember that the flippers are
located randomly at the start, but do not move as the spins evolve. Starting from a configuration
where all the spins are in the A state, plot the probabilities pA(t), pB(t), and pC(t) versus the discrete
time coordinate t, with t ranging from 0 to the recurrence time. If you can, for each value of x, plot
the three probabilities in different colors or line characteristics (e.g. solid, dotted, dashed) on the
same graph.

(c) Let’s call at = p
A
(t), etc. Explain in words why the Stosszahlansatz results in the equations

at+1 = (1− x) at + x ct

bt+1 = (1− x) bt + x at

ct+1 = (1− x) ct + x bt .

This describes what is known as a Markov process, which is governed by coupled equations of the

Figure 15: Zeroth, first, second, and third iterates of the generalized cat map with p = 2, acting on an
initial square distribution (clockwise from upper left).
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Figure 16: Evolution of a pixelated blobfish under the p = 2 generalized cat map.

form Pi(t+ 1) =
∑

j Qij Pj(t), where Q is the transition matrix. Find the 3× 3 transition matrix for
this Markov process.

(d) Show that the total probability is conserved by a Markov process if
∑

iQij = 1 and verify this is
the case for the equations in (c).

(e) One can then eliminate ct = 1− at − bt and write these as two coupled equations. Show that if we
define

ãt ≡ at − 1
3 , b̃t ≡ bt − 1

3 , c̃t ≡ ct − 1
3

that we can write (
ãt+1

b̃t+1

)
= R

(
ãt
b̃t

)
,

and find the 2×2 matrixR. Note that this is not a Markov process in A and B, since total probability
for the A and B states is not itself conserved. Show that the eigenvalues of R form a complex
conjugate pair. Find the amplitude and phase of these eigenvalues. Show that the amplitude
never exceeds unity.

(f) The fact that the eigenvalues of R are complex means that the probabilities should oscillate as they
decay to their equilibrium values p

A
= p

B
= p

C
= 1

3 . Can you see this in your simulations?

Solution :

(a) If the number of flippers Nf is a multiple of 3, then each spin will have made an integer number of
complete cyclic changes A→B→C→A after one complete passage around the ring. The recurrence time
is then N , where N is the number of sites. If the number of flippers Nf is not a multiple of 3, then the
recurrence time is simply 3N .

(b) See figs. 17, 18, 19.

(c) According to the Stosszahlansatz, the probability at+1 that a given spin will be in state A at time (t+1)
is the probability at it was in A at time t times the probability (1 − x) that it did not encounter a flipper,
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Figure 17: Simulation of three state Kac ring model with initial conditions at=0 = 0.7, bt=0 = 0.2,
ct=0 = 0.1. Note the oscillations as equilibrium is approached.

plus the probability ct it was in state C at time t times the probability x that it did encounter a flipper.
This explains the first equation. The others follow by cyclic permutation. The transition matrix is

Q =



1− x 0 x
x 1− x 0
0 x 1− x


 .

(d) The total probability is
∑

i Pi. Assuming
∑

iQij = 1, we have

∑

i

Pi(t+ 1) =
∑

i

∑

j

Qij Pj(t) =
∑

j

(∑

i

Qij

)
Pj(t) =

∑

j

Pj(t)

and the total probability is conserved. That’s a Good Thing.

(e) Substituting at = ãt +
1
3 , etc. into the Markov process and eliminating c̃t = −

(
ãt + b̃t

)
, we obtain

R =

(
1− 2x −x
x 1− x

)
.
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Figure 18: Simulation of three state Kac ring model with initial conditions at=0 = 0.7, bt=0 = 0.2,
ct=0 = 0.1.

The characteristic polynomial for R is

P (λ) = det
(
λ · 1−R

)
= (λ− 1 + 2x)(λ− 1 + x) + x2

= λ2 − (2− 3x)λ+ (1− 3x+ 3x2) .

The eigenvalues are the two roots of P (λ):

λ± = 1− 3
2 x± i

√
3
2 x .

Note that we can write

λ±(x) = e−1/τ(x) e±iφ(x)

where

τ(x) = − 2

ln
(
1− 3x+ 3x2

) , φ(x) = tan−1

( √
3x

2− 3x

)
.

Since x(1− x) achieves its maximum volume on the unit interval x ∈ [0, 1] at x = 1
2 , where x(1− x) = 1

4 ,
we see that 1

2 ≤ |λ(x)| ≤ 1, hence 0 ≤ τ(x) ≤ ln 2. We plot τ(x) and φ(x) in fig. 19.
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If you managed to get this far, then you’ve done all that was asked. However, one can go farther and
analytically solve the equations for the Markov chain. In so doing, we will discuss the linear algebraic
aspects of the problem.

The matrix R is real but not symmetric. For such a matrix, the characteristic polynomial satisfies[
P (λ)

]∗
= P (λ∗), hence if λ is a root of P (λ = 0), which is to say λ is an eigenvalue, then so is λ∗.

Accordingly, the eigenvalues of a real asymmetric matrix are either real or come in complex conjugate
pairs. We can decompose such a matrix R as a sum over its eigenvectors,

Rij =
∑

α

λα ψ
α
i φ

α
j ,

where
∑

j

Rij ψ
α
j = λα ψ

α
i

∑

i

φαi Rij = λα φ
α
j .

Thus, ψα
j is the jth component of the αth right eigenvector ofR, while φαi is the ith component of the αth left

eigenvector of R. Note that φα is a right eigenvector for the transposed matrix Rt. We can further impose
the normalization condition, 〈

φα
∣∣ψβ

〉
=
∑

i

ψα
i φ

β
i = δαβ .

Figure 19: Phase angle and relaxation time
for the three state Kac ring model with
Stosszahlansatz.

One can check that the following assignment of eigen-
vectors is valid for our R(x) matrix:

~ψ+ =

(
1

−eiπ/3
)

~φ+ = 1√
3
eiπ/6

(
1 eiπ/3

)
.

and

~ψ− =

(
1

−e−iπ/3

)

~φ+ = 1√
3
e−iπ/6

(
1 e−iπ/3

)
.

Let us write the vector

~ηt =

(
ãt
b̃t

)
.

We then may expand ~ηt in the right eigenvectors of R,
writing

~ηt =
∑

α

Cα λ
t
α
~ψα .
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Suppose we begin in a state where at=0 = 1 and bt=0 = ct=0 = 0. Then we have ãt=0 =
2
3 and b̃t=0 = −1

3 ,
hence

Cα =
〈
~φα
∣∣
(

+2/3

−1/3

)〉
.

We thereby find C+ = C− = 1
3 , and

ãt =
2
3 e

−t/τ cos
(
t φ
)

b̃t =
2
3 e

−t/τ sin
(
t φ− π

6

)
,

with c̃t = −
(
ãt + b̃t

)
.

(f) Yes! The oscillation is particularly clear in the lower panel of fig. 17.
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(3.8) Consider a spin singlet formed by two S = 1
2 particles, |Ψ 〉 = 1√

2

(
|↑A ↓B 〉 − |↓A ↑B 〉

)
. Find the

reduced density matrix, ρA = Tr B|Ψ 〉〈Ψ |.

Solution :

We have

|Ψ 〉〈Ψ | = 1
2 |↑A ↓B 〉〈 ↑A ↓B |+ 1

2 |↓A ↑B 〉〈 ↓A ↑B | − 1
2 |↑A ↓B 〉〈 ↓A ↑B | − 1

2 |↓A ↑B 〉〈 ↑A ↓B | .

Now take the trace over the spin degrees of freedom on site B. Only the first two terms contribute,
resulting in the reduced density matrix

ρA = Tr B|Ψ 〉〈Ψ | = 1
2 |↑A 〉〈 ↑A |+ 1

2 |↓A 〉〈 ↓A | .

Note that Tr ρA = 1, but whereas the full density matrix ρ = Tr B|Ψ 〉〈Ψ | had one eigenvalue of 1,
corresponding to eigenvector |Ψ 〉, and three eigenvalues of 0, corresponding to any state orthogonal to
|Ψ 〉, the reduced density matrix ρA does not correspond to a ‘pure state’ in that it is not a projector. It has
two degenerate eigenvalues at λ = 1

2 . The quantity SA = −Tr ρA ln ρA = ln 2 is the quantum entanglement
entropy for the spin singlet.
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0.4 Statistical Ensembles

(4.1) Consider a system of N identical but distinguishable particles, each of which has a nondegenerate
ground state with energy zero, and a g-fold degenerate excited state with energy ε > 0.

(a) Let the total energy of the system be fixed at E = Mε, where M is the number of particles in an
excited state. What is the total number of states Ω(E,N)?

(b) What is the entropy S(E,N)? Assume the system is thermodynamically large. You may find it
convenient to define ν ≡M/N , which is the fraction of particles in an excited state.

(c) Find the temperature T (ν). Invert this relation to find ν(T ).

(d) Show that there is a region where the temperature is negative.

(e) What happens when a system at negative temperature is placed in thermal contact with a heat
bath at positive temperature?

Solution :

(a) Since each excited particle can be in any of g degenerate energy states, we have

Ω(E,N) =

(
N

M

)
gM =

N ! gM

M ! (N −M)!
.

(b) Using Stirling’s approximation, we have

S(E,N) = k
B
ln Ω(E,N) = −Nk

B

{
ν ln ν + (1− ν) ln(1− ν)− ν ln g

}
,

where ν =M/N = E/Nε.

(c) The inverse temperature is

1

T
=

(
∂S

∂E

)

N

=
1

Nε

(
∂S

∂ν

)

N

=
k
B

ε
·
{
ln

(
1− ν

ν

)
+ ln g

}
,

hence
k
B
T =

ε

ln
(
1−ν
ν

)
+ ln g

.

Inverting,

ν(T ) =
g e−ε/k

B
T

1 + g e−ε/k
B
T

.

(d) The temperature diverges when the denominator in the above expression for T (ν) vanishes. This
occurs at ν = ν∗ ≡ g/(g + 1). For ν ∈ (ν∗, 1), the temperature is negative! This is technically correct,
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and a consequence of the fact that the energy is bounded for this system: E ∈ [0, Nε]. The entropy as
a function of ν therefore has a maximum at ν = ν∗. The model is unphysical though in that it neglects
various excitations such as kinetic energy (e.g. lattice vibrations) for which the energy can be arbitrarily
large.

(e) When a system at negative temperature is placed in contact with a heat bath at positive temperature,
heat flows from the system to the bath. The energy of the system therefore decreases, and since ∂S

∂E < 0,
this results in a net entropy increase, which is what is demanded by the Second Law of Thermody-
namics. More precisely, let d̄Q be the heat added to the system from the bath. The first law then says
dE = d̄Q. The total entropy change due to such a differential heat transfer is

dStot = dS + dSb =

(
1

T
− 1

Tb

)
dE ,

where dS = dSsys is the entropy change of the system and T is the system temperature; Tb > 0 is the

temperature of the bath. We see that the Second Law, dStot ≥ 0, requires that dE ≤ 0. For d̄Q = dE < 0,
the total entropy increases. Note that the heat capacity of the system is

C =
∂E

∂T
= Nε

∂ν

∂T
=

Nε2

k
B
T 2

g e−ε/k
B
T

(
1 + g e−ε/k

B
T
)2

and that C ≥ 0. Even though the temperature T can be negative, we always have C(T ) ≥ 0; this is
necessary for thermodynamic stability. We conclude that the system’s temperature changes by dT =
dE/C , so if dE < 0 we have dT < 0 and the system cools.

All should be clear upon examination of Fig. 26. When ν > ν∗, the system temperature is negative.

Placing the system in contact with a bath at temperature Tb > 0 will cause heat to flow from the system
to the bath: d̄Q = dE < 0. This means dν = dE/Nε < 0, hence ν decreases and approaches ν∗ from
above, at which point T = −∞. At this point, a further differential transfer −d̄Q > 0 from the system

to the bath continues to result in an increase of total entropy, with dStot = −d̄Q/Tb at ν = ν∗. Thus, ν
crosses ν∗, and the temperature flips from T = −∞ to T = +∞. At this point, we can appeal to our
normal intuition. The system is much hotter than the bath, and heat continues to flow to the bath. This

has the (familiar) effect of lowering the system temperature, which will then approach Tb from above.

Ultimately, both system and bath will be at temperature Tb, as required for thermodynamic equilibrium.
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Figure 20: Bottom: dimensionless temperature θ(ν) ≡ kBT/ε versus dimensionless energy density ν =
E/Nε for problem 1, shown here for g = 3. Note that T → ∓∞ for ν → ν∗ ± 0+, where ν∗ = g/(g + 1) is
the energy density at which the entropy is maximum. Top: dimensionless entropy s(ν) ≡ S/NkB versus
dimensionless energy density ν. Note the maximum at ν∗ = g/(g + 1), where g is the degeneracy of the
excited level.

(4.2) Solve for the model in problem 1 using the ordinary canonical ensemble. The Hamiltonian is

Ĥ = ε

N∑

i=1

(
1− δσi,1

)
,

where σi ∈ {1, . . . , g + 1}.

(a) Find the partition function Z(T,N) and the Helmholtz free energy F (T,N).

(b) Show that M̂ = ∂Ĥ
∂ε counts the number of particles in an excited state. Evaluate the thermodynamic

average ν(T ) = 〈M̂ 〉/N .

(c) Show that the entropy S = −
(
∂F
∂T

)
N

agrees with your result from problem 1.

Solution :

(a) We have

Z(T,N) = Tr e−βĤ =
(
1 + g e−ε/k

B
T
)N

.
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The free energy is

F (T,N) = −k
B
T lnF (T,N) = −Nk

B
T ln

(
1 + g e−ε/k

B
T
)

.

(b) We have

M̂ =
∂Ĥ

∂ε
=

N∑

i=1

(
1− δσi,1

)
.

Clearly this counts all the excited particles, since the expression 1 − δσi,1
vanishes if i = 1, which is the

ground state, and yields 1 if i 6= 1, i.e. if particle i is in any of the g excited states. The thermodynamic
average of M̂ is 〈M̂〉 =

(
∂F
∂ε

)
T,N

, hence

ν =
〈M̂〉
N

=
g e−ε/k

B
T

1 + g e−ε/k
B
T

,

which agrees with the result in problem 1c.

(c) The entropy is

S = −
(
∂F

∂T

)

N

= Nk
B
ln
(
1 + g e−ε/k

B
T
)
+
Nε

T

g e−ε/k
B
T

1 + g e−ε/k
B
T

.

Working with our result for ν(T ), we derive

1 + g e−ε/k
B
T =

1

1− ν
ε

k
B
T

= ln

(
g(1 − ν)

ν

)
.

Inserting these results into the above expression for S, we verify

S = −Nk
B
ln(1− ν) +Nk

B
ν ln

(
g(1− ν)

ν

)

= −Nk
B

{
ν ln ν + (1− ν) ln(1− ν)− ν ln g

}
,

as we found in problem 1b.
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(4.3) Consider a system of noninteracting spin trimers, each of which is described by the Hamiltonian

Ĥ = −J
(
σ1σ2 + σ2σ3 + σ3σ1

)
− µ0H

(
σ1 + σ2 + σ3

)
.

The individual spin polarizations σi are two-state Ising variables, with σi = ±1.

(a) Find the single trimer partition function ζ .

(b) Find the magnetization per trimer m = µ0 〈σ1 + σ2 + σ3〉.

(c) Suppose there are N△ trimers in a volume V . The magnetization density is M = N△m/V . Find the
zero field susceptibility χ(T ) = (∂M/∂H)H=0.

(d) Find the entropy S(T,H,N△).

(e) Interpret your results for parts (b), (c), and (d) physically for the limits J → +∞, J → 0, and
J → −∞.

Solution :

The eight trimer configurations and their corresponding energies are listed in the table below.

|σ1σ2σ3 〉 E |σ1σ2σ3 〉 E

|↑↑↑ 〉 −3J − 3µ0H |↓↓↓ 〉 −3J + 3µ0H

|↑↑↓ 〉 +J − µ0H |↓↓↑ 〉 +J + µ0H

|↑↓↑ 〉 +J − µ0H |↓↑↓ 〉 +J + µ0H

|↓↑↑ 〉 +J − µ0H |↑↓↓ 〉 +J + µ0H

Table 7: Spin configurations and their corresponding energies.

(a) The single trimer partition function is then

ζ =
∑

α

e−βEα = 2 e3βJ cosh(3βµ0H) + 6 e−βJ cosh(βµ0H) .

(b) The magnetization is

m =
1

βζ

∂ζ

∂H
= 3µ0 ·

(
e3βJ sinh(3βµ0H) + e−βJ sinh(βµ0H)

e3βJ cosh(3βµ0J) + 3 e−βJ cosh(βµ0H)

)

(c) Expanding m(T,H) to lowest order in H , we have

m = 3βµ20H ·
(
3 e3βJ + e−βJ

e3βJ + 3 e−βJ

)
+O(H3) .
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Thus,

χ(T ) =
N△
V

· 3µ
2
0

k
B
T

·
(
3 e3J/kBT + e−J/k

B
T

e3J/kBT + 3 e−J/k
B
T

)
.

(d) Note that

F =
1

β
lnZ , E =

∂ lnZ

∂β
.

Thus,

S =
E − F

T
= k

B

(
lnZ − β

∂ lnZ

∂β

)
= N△kB

(
ln ζ − β

∂ ln ζ

∂β

)
.

So the entropy is

S(T,H,N△) = N△kB
ln
(
2 e3βJ cosh(3βµ0H) + 6 e−βJ cosh(βµ0H)

)

− 6N△βJkB
·
(

e3βJ cosh(3βµ0H)− e−βJ cosh(βµ0H)

2 e3βJ cosh(3βµ0H) + 6 e−βJ cosh(βµ0H)

)

− 6N△βµ0HkB
·
(

e3βJ sinh(3βµ0H) + e−βJ sinh(βµ0H)

2 e3βJ cosh(3βµ0H) + 6 e−βJ cosh(βµ0H)

)
.

Setting H = 0 we have

S(T,H = 0, N△) = N△kB
ln 2 +N△kB

ln
(
1 + 3 e−4J/k

B
T
)
+
N△J

T
·
(

12 e−4J/k
B
T

1 + 3 e−4J/k
B
T

)

= N△kB
ln 6 +N△kB

ln
(
1 + 1

3 e
4J/k

B
T
)
−
N△J

T
·
(

4 e4J/kBT

3 + e4J/kBT

)
.

(e) Note that for J = 0 we have m = 3µ20H/kB
T , corresponding to three independent Ising spins. The

H = 0 entropy is then N△kB
ln 8 = 3N△kB

ln 2, as expected. As J → +∞ we have m = 9µ20H/kB
T =

(3µ0)
2H/k

B
T , and each trimer acts as a single Z2 Ising spin, but with moment 3µ0. The zero field entropy

in this limit tends toN△kB
ln 2, again corresponding to a single Z2 Ising degree of freedom per trimer. For

J → −∞, we havem = µ20H/kB
T and S = N△kB

ln 6. This is because the only allowed (i.e. finite energy)
states of each trimer are the three states with magnetization +µ0 and the three states with magnetization
−µ0, all of which are degenerate at H = 0.
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(4.4) In §4.9.4 of the lecture notes, we considered a simple model for the elasticity of wool in which each
of N monomers was in one of two states A or B, with energies ε

A,B
and lengths ℓ

A,B
. Consider now the

case where the A state is doubly degenerate due to a magnetic degree of freedom which does not affect
the energy or the length of the A± monomers.

(a) Generalize the results from this section of the lecture notes and show that you can write the Hamil-
tonian Ĥ and chain length L̂ in terms of spin variables Sj ∈ {−1, 0, 1}, where Sj = ±1 if monomer

j is in state A±, and Sj = 0 if it is in state B. Construct the appropriate generalization of K̂−Ĥ−τL̂.

(b) Find the equilibrium length L(T, τ,N) as a function of the temperature, tension, and number of
monomers.

(c) Now suppose an external magnetic field is present, so the energies of the A± states are split, with
ε
A± = εA ∓ µ0H . Find an expression for L(T, τ,H,N).

Solution :

(a) Take

Ĥ =

N∑

j=1

[
εB + (εA − εB)S

2
j

]
, L̂ =

N∑

j=1

[
ℓB + (ℓA − ℓB)S

2
j

]
,

resulting in

K̂ = Ĥ − τL̂ = N(εB − τℓB) + ∆

N∑

j=1

S2
j ,

where
∆ = (ε

A
− ε

B
)− τ(ℓ

A
− ℓ

B
) .

(b) The partition function is

Y (T, τ,N) = e−G/k
B
T = Tr e−K̂/k

B
T

= e−N(ε
B
−τℓ

B
)/k

B
T
(
1 + 2 e−∆/k

B
T
)N

.

Thus, the Gibbs free energy is

G(T, τ,N) = −k
B
T lnY (T, τ,N) = N(ε

B
− τℓ

B
)−Nk

B
T ln

(
1 + 2 e−∆/k

B
T
)

.

The equilibrium length is

L = −∂G
∂τ

= Nℓ
B
+N(ℓ

A
− ℓ

B
) · 2 e−∆/k

B
T

1 + 2 e−∆/k
B
T

.

Note that L = Nℓ
A

for ∆ → −∞ and L = Nℓ
B

for ∆ → +∞.

(c) Accounting for the splitting of the two A states,

L = Nℓ
B
+N(ℓ

A
− ℓ

B
) · 2 e−∆/k

B
T cosh(µ0H/kB

T )

1 + 2 e−∆/k
B
T cosh(µ0H/kB

T )
.
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(4.5) Consider a generalization of the situation in §4.4 of the notes where now three reservoirs are in
thermal contact, with any pair of systems able to exchange energy.

(a) Assuming interface energies are negligible, what is the total density of states D(E)? Your answer
should be expressed in terms of the densities of states functions D1,2,3 for the three individual
systems.

(b) Find an expression for P (E1, E2), which is the joint probability distribution for system 1 to have
energyE1 while system 2 has energyE2 and the total energy of all three systems is E1+E2+E3 =
E.

(c) Extremize P (E1, E2) with respect to E1,2. Show that this requires the temperatures for all three
systems must be equal: T1 = T2 = T3. Writing Ej = E∗

j + δEj , where E∗
j is the extremal solution

(j = 1, 2), expand lnP (E∗
1 + δE1 , E

∗
2 + δE2) to second order in the variations δEj . Remember that

S = k
B
lnD ,

(
∂S

∂E

)

V,N

=
1

T
,

(
∂2S

∂E2

)

V,N

= − 1

T 2CV

.

(d) Assuming a Gaussian form for P (E1, E2) as derived in part (c), find the variance of the energy of
system 1,

Var(E1) =
〈
(E1 − E∗

1)
2
〉

.

Solution :

(a) The total density of states is a convolution:

D(E) =

∞∫

−∞

dE1

∞∫

−∞

dE2

∞∫

−∞

dE3 D1(E1)D2(E2)D3(E3) δ(E − E1 − E2 −E3) .

(b) The joint probability density P (E1, E2) is given by

P (E1, E2) =
D1(E2)D2(E2)D3(E − E1 − E2)

D(E)
.

(c) We set the derivatives ∂ lnP/∂E1,2 = 0, which gives

∂ lnP

∂E1

=
∂ lnD1

∂E1

− ∂D3

∂E3

= 0 ,
∂ lnP

∂E2

=
∂ lnD3

∂E2

− ∂D3

∂E3

= 0 ,

where E3 = E − E1 − E2 in the argument of D3(E3). Thus, we have

∂ lnD1

∂E1

=
∂ lnD2

∂E2

=
∂ lnD3

∂E3

≡ 1

T
.
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Expanding lnP (E∗
1 + δE1 , E

∗
2 + δE2) to second order in the variations δEj , we find the first order terms

cancel, leaving

lnP (E∗
1 + δE1 , E

∗
2 + δE2) = lnP (E∗

1 , E
∗
2)−

(δE1)
2

2k
B
T 2C1

− (δE2)
2

2k
B
T 2C2

− (δE1 + δE2)
2

2k
B
T 2C3

+ . . . ,

where ∂2 lnDj/∂E
2
j = −1/2k

B
T 2Cj , with Cj the heat capacity at constant volume and particle number.

Thus,

P (E1, E2) =

√
det(C−1)

2πk
B
T 2

exp
(
− 1

2k
B
T 2

C−1
ij δEi δEj

)
,

where the matrix C−1 is defined as

C−1 =

(
C−1
1 + C−1

3 C−1
3

C−1
3 C−1

2 + C−1
3

)
.

One finds
det(C−1) = C−1

1 C−1
2 + C−1

1 C−1
3 + C−1

2 C−1
3 .

The prefactor in the above expression for P (E1, E2) has been fixed by the normalization condition∫
dE1

∫
dE2 P (E1, E2) = 1.

(d) Integrating over E2, we obtain P (E1):

P (E1) =

∞∫

−∞

dE2 P (E1, E2) =
1√

2πk
B
C̃1T

2

e−(δE1)
2/2k

B
C̃1T

2

,

where

C̃1 =
C−1
2 + C−1

3

C−1
1 C−1

2 + C−1
1 C−1

3 + C−1
2 C−1

3

.

Thus,

〈(δE1)
2〉 =

∞∫

−∞

dE1 (δE1)
2 = k

B
C̃1T

2 .
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(4.6) Show that the Boltzmann entropy S = −k
B

∑
n Pn lnPn agrees with the statistical entropy S(E) =

k
B
lnD(E,V,N) in the thermodynamic limit.

Solution :

Let’s first examine the canonical partition function, Z =
∞∫
0

dE D(E) e−βE . We compute this integral via

the saddle point method, extremizing the exponent, lnD(E) − βE , with respect to E. The resulting
maximum lies at Ē such that 1

T = ∂S
∂E

∣∣
Ē

, where S(E) = k
B
lnD(E) is the statistical entropy computed

in the microcanonical ensemble. The ordinary canonical partition function is then

Z ≈ D(Ē) e−βĒ

∞∫

−∞

d δE e−(δE)2/2k
B
T 2CV

= (2πk
B
T 2CV )

1/2D(Ē) e−βĒ .

Taking the logarithm, we obtain the Helmholtz free energy,

F = −k
B
T lnZ = −k

B
lnD(Ē) + Ē − 1

2kB
T ln

(
2πk

B
T 2CV

)
.

Now S
OCE

= −k
B

∑
n Pn lnPn, with Pn = 1

Z e
−βEn . Therefore

S
OCE

(T ) =
k
B

Z

∞∫

0

dE D(E) e−βE
(
lnZ + βE

)

= k
B
lnZ +

1

T
·
∫∞
0 dE ED(E) e−βE

∫∞
0 dE D(E) e−βE

.

The denominator of the second term is Z , which we have already evaluated. We evaluate the numer-
ator using the same expansion about Ē. The only difference is the additional factor of E = Ē + δE
in the integrand. The δE term integrates to zero, since the remaining factors in the integrand yield

D(Ē) e−βĒ e−(δE)2/2k
B
T 2CV , which is even in δE. Thus, the second term in the above equation is simply

Ē/T , and we obtain
S

OCE
= k

B
lnD(Ē) + 1

2kB
ln
(
2πk

B
T 2CV ) .

The RHS here is dominated by the first term, which is extensive, whereas the second term is of order
lnV . Thus, we conclude that S

OCE
(T, V,N) = SµCE

(Ē, V,N), where Ē and T are related by 1
T = ∂S

∂E

∣∣
Ē

.
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(4.7) Consider rod-shaped molecules with moment of inertia I , and a dipole moment µ. The contribu-
tion of the rotational degrees of freedom to the Hamiltonian is

Ĥrot =
p2θ
2I

+
p2φ

2I sin2θ
− µE cos θ ,

where E is the external electric field, and (θ, φ) are polar and azimuthal angles describing the molecular
orientation6.

(a) Calculate the contribution of the rotational degrees of freedom of each dipole to the classical par-
tition function.

(b) Obtain the mean polarization P = 〈µ cos θ〉 of each dipole.

(c) Find the zero-field isothermal polarizability, χ(T ) =
(
∂P
∂E

)
E=0

.

(d) Calculate the rotational energy per particle at finite field E, and comment on its high and low-
temperature limits.

(e) Sketch the rotational heat capacity per dipole as a function of temperature.

Solution :

(a) The rotational contribution to the single particle partition function is

ξrot =

∞∫

−∞

dpθ

∞∫

−∞

dpφ

π∫

0

dθ

2π∫

0

dφ e−p2θ/2IkBT e−p2φ/2IkBT sin2θ eµE cos θ/k
B
T

= 2π · (2πIk
B
T )1/2

π∫

0

dθ eµE cos θ/k
B
T

∞∫

−∞

dpθ e
−p2φ/2IkBT sin2θ

= 4π2Ik
B
T

π∫

0

dθ sin θ eµE cos θ/k
B
T =

8π2I(k
B
T )2

µE
sinh

(
µE

k
B
T

)
.

The translational contribution is ξtr = V λ−3
T . The single particle free energy is then

f = −k
B
T ln

(
8π2Ik2

B
T 2
)
+ k

B
T ln(µE)− k

B
T ln sinh

(
µE

k
B
T

)
− k

B
T ln

(
V/λ3T

)
.

(b) The mean polarization of each dipole is

P = − ∂f

∂E
= −kB

T

E
+ µ ctnh

(
µE

k
B
T

)
.

6This is problem 4.12 from vol. 1 of M. Kardar.
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(c) We expand ctnh (x) = 1
x + x

3 + O(x3) in a Laurent series, whence P = µ2E/3k
B
T + O(E3). Then

χ(T ) = µ2/3k
B
T , which is of the Curie form familiar from magnetic systems.

(d) We have ξrot = Tr e−βĥrot , hence

εrot = 〈ĥrot〉 = −∂ ln ξrot
∂β

= − ∂

∂β

{
− 2 ln β + ln sinh(βµE)

}

= 2k
B
T − µE ctnh

(
µE

k
B
T

)
.

At high temperatures T ≫ µE/k
B

, the argument of ctnhx is very small, and using the Laurent expan-
sion we find εrot = k

B
T . This comports with our understanding from equipartition, since there are only

two quadratic degrees of freedom present (pθ and pφ). The orientational degree of freedom θ does not
enter because µE cos θ ≪ k

B
T in this regime. Unlike the rotational kinetic energy, the rotational poten-

tial energy is bounded. In the limit T ≪ µE/k
B

, we have that the argument of ctnhx is very large, hence
εrot ≈ 2k

B
T − µE. This can be understood as follows. If we change variables to p̃φ ≡ pφ/ sin θ, then we

have

ξrot =

∞∫

−∞

dpθ

∞∫

−∞

dp̃φ

π∫

0

dθ sin θ

2π∫

0

dφ e−p2θ/2IkBT e−p̃2φ/2IkBT eµE cos θ/k
B
T

=

∞∫

−∞

dpθ

∞∫

−∞

dp̃φ

1∫

−1

dx

2π∫

0

dφ e−p2θ/2IkBT e−p̃2φ/2IkBT eµEx/k
B
T ,

where x = cos θ. We see that x appears linearly in the energy, and simple dimensional analysis reveals
that any degree of freedom ζ which appears homogeneously as U(ζ) ∝ ζr contributes k

B
T/r to the

average energy. In our case, we have quadratic contributions to the Hamiltonian from pθ and p̃φ, a linear

contribution from x = cos θ, and φ itself does not appear. Hence ε = −µE+2×1
2kB

T+k
B
T = −µE+2k

B
T .

The −µE term is the minimum value of the potential energy.

(e) The rotational heat capacity per molecule, sketched in Fig. 35, is given by

crot =
∂εrot
∂T

= 2k
B
− k

B

(
µE/k

B
T

sinh(µE/k
B
T )

)2
.
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Figure 21: Rotational heat capacity crot(T ) for problem 7.

(4.8) Consider a surface containing Ns adsorption sites which is in equilibrium with a two-component
nonrelativistic ideal gas containing atoms of types A and B . (Their respective masses are mA and mB).
Each adsorption site can be in one of three possible states: (i) vacant, (ii) occupied by an A atom, with
energy −∆A, and (ii) occupied with a B atom, with energy −∆B.

(a) Find the grand partition function for the surface, Ξsurf(T, µA, µB, Ns).

(b) Suppose the number densities of the gas atoms are nA and nB. Find the fraction fA(nA, nB, T ) of
adsorption sites with A atoms, and the fraction f0(nA, nB, T ) of adsorption sites which are vacant.

Solution :

(a) The surface grand partition function is

Ξsurf(T, µA, µB, Ns) =
(
1 + e(∆A

+µ
A
)/k

B
T + e(∆B

+µ
B
)/k

B
T
)Ns

.

(b) From the grand partition function of the gas, we have

nA = λ−3
T,A e

µ
A
/k

B
T , nB = λ−3

T,B e
µ
B
/k

B
T ,

with

λT,A =

√
2π~2

mAkB
T

, λT,B =

√
2π~2

mBkB
T

.

Thus,

f0 =
1

1 + nA λ
3
T,A e

∆
A
/k

B
T + nB λ

3
T,B e

∆
B
/k

B
T

fA =
nA λ

3
T,A e

∆
A
/k

B
T

1 + nA λ
3
T,A e

∆
A
/k

B
T + nB λ

3
T,B e

∆
B
/k

B
T

fB =
nB λ

3
T,B e

∆
B
/k

B
T

1 + nA λ
3
T,A e

∆
A
/k

B
T + nB λ

3
T,B e

∆
B
/k

B
T

.



84 LIST OF FIGURES

Note that f0 + fA + fB = 1.
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(4.9) Consider a two-dimensional gas of identical classical, noninteracting, massive relativistic particles

with dispersion ε(p) =
√

p2c2 +m2c4.

(a) Compute the free energy F (T, V,N).

(b) Find the entropy S(T, V,N).

(c) Find an equation of state relating the fugacity z = eµ/kBT to the temperature T and the pressure p.

Solution :

(a) We have Z = (ζA)N/N ! where A is the area and

ζ(T ) =

∫
d2p

h2
e−β

√
p2c2+m2c4 =

2π

(βhc)2
(
1 + βmc2

)
e−βmc2 .

To obtain this result it is convenient to change variables to u = β
√
p2c2 +m2c4, in which case p dp =

u du/β2c2, and the lower limit on u is mc2. The free energy is then

F = −k
B
T lnZ = Nk

B
T ln

(
2π~2c2N

(k
B
T )2A

)
−Nk

B
T ln

(
1 +

mc2

k
B
T

)
+Nmc2 .

where we are taking the thermodynamic limit with N → ∞.

(b) We have

S = −∂F
∂T

= −Nk
B
ln

(
2π~2c2N

(k
B
T )2A

)
+Nk

B
ln

(
1 +

mc2

k
B
T

)
+Nk

B

(
mc2 + 2k

B
T

mc2 + k
B
T

)
.

(c) The grand partition function is

Ξ(T, V, µ) = e−βΩ = eβpV =
∞∑

N=0

ZN (T, V,N) eβµN .

We then find Ξ = exp
(
ζA eβµ

)
, and

p =
(k

B
T )3

2π(~c)2

(
1 +

mc2

k
B
T

)
e(µ−mc2)/k

B
T .

Note that

n =
∂(βp)

∂µ
=

p

k
B
T

=⇒ p = nk
B
T .
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(4.10) A nonrelativistic gas of spin-12 particles of mass m at temperature T and pressure p is in equi-
librium with a surface. There is no magnetic field in the bulk, but the surface itself is magnetic, so the
energy of an adsorbed particle is −∆−µ0Hσ, where σ = ±1 is the spin polarization andH is the surface
magnetic field. The surface has NS adsorption sites.

(a) Compute the Landau free energy of the gas Ωgas(T, V, µ). Remember that each particle has two
spin polarization states.

(b) Compute the Landau free energy of the surface Ωsurf(T,H,NS). Remember that each adsorption
site can be in one of three possible states: empty, occupied with σ = +1, and occupied with σ = −1.

(c) Find an expression for the fraction f(p, T,∆,H) of occupied adsorption sites.

(d) Find the surface magnetization, M = µ0
(
Nsurf,↑ −Nsurf,↓

)
.

Solution :

(a) We have

Ξgas(T, V, µ) =

∞∑

N=0

eNµ/k
B
T Z(T, V,N) =

∞∑

N=0

V N

N !
eNµ/k

B
T 2N λ−3N

T

= exp
(
2V k

B
Tλ−3

T eµ/kBT
)

,

where λT =
√

2π~2/mk
B
T is the thermal wavelength. Thus,

Ωgas = −k
B
T ln Ξgas = −2V k

B
Tλ−3

T eµ/kBT .

(b) Each site on the surface is independent, with three possible energy states: E = 0 (vacant), E =
−∆− µ0H (occupied with σ = +1), and E = −∆+ µ0H (occupied with σ = −1). Thus,

Ξsurf(T,H,NS) =
(
1 + e(µ+∆+µ0H)/k

B
T + e(µ+∆−µ0H)/k

B
T
)N

S
.

The surface free energy is

Ωsurf(T,H,NS) = −k
B
T ln Ξsurf = −NSkB

T ln
(
1 + 2 e(µ+∆)/k

B
T cosh(µ0H/kB

T )
)

.

(c) The fraction of occupied surface sites is f = 〈Nsurf/NS〉. Thus,

f = − 1

NS

∂Ωsurf

∂µ
=

2 e(µ+∆)/k
B
T cosh(µ0H/kB

T )

1 + 2 e(µ+∆)/k
B
T cosh(µ0H/kB

T )
=

2

2 + e−(µ+∆)/k
B
T sech(µ0H/kB

T )
.
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To find f(p, T,∆,H), we must eliminate µ in favor of p, the pressure in the gas. This is easy! From
Ωgas = −pV , we have p = 2k

B
Tλ−3

T eµ/kBT , hence

e−µ/k
B
T =

2k
B
T

pλ3T
.

Thus,

f(p, T,∆,H) =
p λ3T

p λ3T + k
B
T e−∆/k

B
T sech(µ0H/kB

T )
.

Note that f → 1 when ∆ → ∞, when T → 0, when p→ ∞, or when H → ∞.

(d) The surface magnetization is

M = −∂Ωsurf

∂H
= NS µ0 ·

2 e(µ+∆)/k
B
T sinh(µ0H/kB

T )

1 + 2 e(µ+∆)/k
B
T cosh(µ0H/kB

T )

=
NS µ0 p λ

3
T tanh(µ0H/kB

T )

p λ3T + k
B
T e−∆/k

B
T sech(µ0H/kB

T )
.
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(4.11) A classical gas consists of particles of two species: A and B. The dispersions for these species are

ε
A
(p) =

p2

2m
, ε

B
(p) =

p2

4m
−∆ .

In other words, m
A
= m and m

B
= 2m, and there is an additional energy offset −∆ associated with the

B species.

(a) Find the grand potential Ω(T, V, µ
A
, µ

B
).

(b) Find the number densities n
A
(T, µ

A
, µ

B
) and n

B
(T, µ

A
, µ

B
).

(c) If 2A ⇋ B is an allowed reaction, what is the relation between n
A

and n
B

?
(Hint : What is the relation between µ

A
and µ

B
?)

(d) Suppose initially that n
A
= n and n

B
= 0. Find n

A
in equilibrium, as a function of T and n and

constants.

Solution :

(a) The grand partition function Ξ is a product of contributions from the A and B species, and the grand
potential is a sum:

Ω = −V k
B
T λ−3

T eµA
/k

B
T − 23/2 V k

B
T λ−3

T e(µB
+∆)/k

B
T

Here, we have defined the thermal wavelength for the A species as λT ≡ λT,A =
√

2π~2/mk
B
T . For the

B species, since the mass is twice as great, we have λT,B = 2−1/2 λT,A.

(b) The number densities are

n
A
= − 1

V
· ∂Ω
∂µ

A

= V λ−3
T eµA

/k
B
T

n
B
= − 1

V
· ∂Ω
∂µ

B

= 23/2 V λ−3
T e(µB

+∆)/k
B
T .

If the reaction 2A ⇋ B is allowed, then the chemical potentials of the A and B species are related by
µ

B
= 2µ

A
≡ 2µ. We then have

n
A
λ3T = eµ/kBT , n

B
λ3T = 23/2 e(2µ+∆)/k

B
T .

(c) The relation we seek is therefore

n
B
= 23/2 n2Aλ

3
T e

∆/k
B
T .
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(d) If we initially have n
A
= n and n

B
= 0, then in general we must have

n
A
+ 2n

B
= n =⇒ n

B
= 1

2

(
n− n

A

)
.

Thus, eliminating n
B

, we have a quadratic equation,

23/2 λ3T e
∆/k

B
T n2

A
= 1

2(n− n
A
) ,

the solution of which is

n
A
=

−1 +
√

1 + 16
√
2nλ3T e

∆/k
B
T

8
√
2λ3T e

∆/k
B
T

.
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(4.12) The potential energy density for an isotropic elastic solid is given by

U(x) = µTr ε2 + 1
2λ (Tr ε)

2

= µ
∑

α,β

ε2αβ(x) +
1
2λ
(∑

α

εαα(x)
)2

,

where µ and λ are the Lamé parameters and

εαβ =
1

2

(
∂uα

∂xβ
+
∂uβ

∂xα

)
,

with u(x) the local displacement field, is the strain tensor. The Cartesian indices α and β run over x, y, z.
The kinetic energy density is

T (x) = 1
2ρ u̇

2(x) .

(a) Assume periodic boundary conditions, and Fourier transform to wavevector space,

uα(x, t) = 1√
V

∑

k

ûαk(t) e
ik·x

ûαk(t) =
1√
V

∫
d3x uα(x, t) e−ik·x .

Write the Lagrangian L =
∫
d3x
(
T −U

)
in terms of the generalized coordinates ûαk(t) and general-

ized velocities ˙̂uαk(t).

(b) Find the Hamiltonian H in terms of the generalized coordinates ûαk(t) and generalized momenta
π̂αk (t).

(c) Find the thermodynamic average 〈u(0) · u(x)〉.

(d) Suppose we add in a nonlocal interaction of the strain field of the form

∆U = 1
2

∫
d3x

∫
d3x′ Tr ε(x) Tr ε(x′) v(x − x

′) .

Repeat parts (b) and (c).

Solution :

To do the mode counting we are placing the system in a box of dimensions Lx × Ly × Lz and imposing
periodic boundary conditions. The allowed wavevectors k are of the form

k =

(
2πnx
Lx

,
2πny
Ly

,
2πnz
Lz

)
.

We shall repeatedly invoke the orthogonality of the plane waves:

Lx∫

0

dx

Ly∫

0

dy

Lz∫

0

dz ei(k−k′)·x = V δk,k′ ,
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where V = LxLyLz is the volume. When we Fourier decompose the displacement field, we must take

care to note that ûαk is complex, and furthermore that ûα−k =
(
ûαk
)∗

, since uα(x) is a real function.

(a) We then have

T =

∞∫

−∞

dx 1
2ρ u̇

2(x, t) = 1
2ρ
∑

k

∣∣ ˙̂uαk(t)
∣∣2

and

U =

∞∫

−∞

dx

[
1
2µ

∂uα

∂xβ
∂uα

∂xβ
+ 1

2 (λ+ µ) (∇·u)2
]

= 1
2

∑

k

(
µ δαβ + (λ+ µ) k̂α k̂β

)
k2 ûαk(t) û

β
−k(t) .

The Lagrangian is of course L = T − U .

(b) The momentum π̂αk conjugate to the generalized coordinate ûαk is

π̂αk =
∂L

∂ ˙̂u
α
k

= ρ ˙̂uα−k ,

and the Hamiltonian is

H =
∑

k

π̂αk
˙̂uαk − L

=
∑

k

{∣∣π̂αk
∣∣2

2ρ
+ 1

2

[
µ
(
δαβ − k̂α k̂β

)
+ (λ+ 2µ) k̂α k̂β

]
k
2 ûαk û

β
−k

}
.

Note that we have added and subtracted a term µ k̂α k̂β within the expression for the potential energy.
This is because Pαβ = k̂α k̂β and Qαβ = δαβ − k̂α k̂β are projection operators satisfying P2 = P and Q2 = Q,

with P + Q = I, the identity. P projects any vector onto the direction k̂, and Q is the projector onto the
(two-dimensional) subspace orthogonal to k̂.

(c) We can decompose ûk into a longitudinal component parallel to k̂ and a transverse component perpen-
dicular to k̂, writing

ûk = ik̂ û
‖
k + iêk,1 û

⊥,1
k + iêk,2 û

⊥,2
k ,

where {êk,1 , êk,2 , k̂} is a right-handed orthonormal triad for each direction k̂. A factor of i is included

so that û
‖
−k =

(
û
‖
k

)∗
, etc. With this decomposition, the potential energy takes the form

U = 1
2

∑

k

[
µ k2

(∣∣û⊥,1
k

∣∣2 +
∣∣û⊥,2

k

∣∣2
)
+ (λ+ 2µ)k2

∣∣û‖k
∣∣2
]

.

Equipartition then means each independent degree of freedom which is quadratic in the potential con-

tributes an average of 1
2kB

T to the total energy. Recalling that u
‖
k and u⊥,j

k (j = 1, 2) are complex func-
tions, and that they are each the Fourier transform of a real function (so that k and −k terms in the sum
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for U are equal), we have

〈
µ k2

∣∣û⊥,1
k

∣∣2
〉
=
〈
µ k2

∣∣û⊥,2
k

∣∣2
〉
= 2× 1

2kB
T

〈
(λ+ 2µ)k2

∣∣û‖k
∣∣2
〉
= 2× 1

2kB
T .

Thus,

〈
|ûk|2

〉
= 4× 1

2kB
T × 1

µk2
+ 2× 1

2kB
T × 1

(λ+ 2µ)k2

=

(
2

µ
+

1

λ+ 2µ

)
k
B
T

k2
.

Then

〈
u(0) · u(x)

〉
=

1

V

∑

k

〈
|ûk|2

〉
eik·x

=

∫
d3k

(2π)3

(
2

µ
+

1

λ+ 2µ

)
k
B
T

k2
eik·x

=

(
2

µ
+

1

λ+ 2µ

)
k
B
T

4π|x| .

Recall that in three space dimensions the Fourier transform of 4π/k2 is 1/|x|.

(d) The k-space representation of ∆U is

∆U = 1
2

∑

k

k2 v̂(k) k̂α k̂β ûαk û
β
−k ,

where v̂(k) is the Fourier transform of the interaction v(x− x′):

v̂(k) =

∫
d3r v(r) e−ik·r .

We see then that the effect of ∆U is to replace the Lamé parameter λ with the k-dependent quantity,

λ→ λ(k) ≡ λ+ v̂(k) .

With this simple replacement, the results of parts (b) and (c) retain their original forms, mutatis mutandis.
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(4.13) For polyatomic molecules, the full internal partition function is written as the product

ξ(T ) =
gel · gnuc
gsym

· ξvib(T ) · ξrot(T ) ,

where gel is the degeneracy of the lowest electronic state7, gnuc =
∏

j(2Ij + 1) is the total nuclear spin

degeneracy, ξvib(T ) is the vibrational partition function, and ξrot(T ) is the rotational partition function8.
The integer gsym is the symmetry factor of the molecule, which is defined to be the number of identical
configurations of a given molecule which are realized by rotations when the molecule contains identical
nuclei. Evaluate gnuc and gsym for the molecules CH4 (methane), CH3D, CH2D2, CHD3, and CD4. Discuss
how the successive deuteration of methane will affect the vibrational and rotational partition functions.
For the vibrations your discussion can be qualitative, but for the rotations note that all one needs, as we
derived in problem (6), is the product I1I2I3 of the moments of inertia, which is the determinant of the
inertia tensor Iαβ in a body-fixed center-of-mass frame. Using the parallel axis theorem, one has

Iαβ =
∑

j

mj

(
r
2
j δαβ − rαj r

β
j

)
+M

(
R

2 δαβ −RαRβ
)

where M =
∑

j mj and R = M−1
∑

j mjrj . Recall that methane is structurally a tetrahedron of hy-
drogen atoms with a carbon atom at the center, so we can take r1 = (0, 0, 0) to be the location of the
carbon atom and r2,3,4,5 = (1, 1, 1) , (1,−1,−1) , (−1, 1,−1) , (−1,−1, 1) to be the location of the hydro-

gen atoms, with all distances in units of 1√
3

times the C−H separation.

Solution :

The total partition function is given by

Z(T, V,N) =
V N

N !

(
2π~2

Mk
B
T

)3N/2

ξNint(T ) ,

The Gibbs free energy per particle is

µ(T, p) =
G(T, p,N)

N
= k

B
T ln

(
p λdT
k
B
T

)
− k

B
T ln ξ(T )

= k
B
T ln

(
p λdT
k
B
T

)
− k

B
T ln

(
gel · gnuc
gsym

)

+ k
B
T
∑

a

ln
(
2 sinh(Θa/2T )

)
− k

B
T ln

[(
2k

B
T

~2

)3/2√
πI1I2I3

]
.

The electronic degeneracy is gel = 1 for all stages of deuteration. The nuclear spin of the proton is I = 1
2

and that of the deuteron is I = 1. Thus there is a nuclear degeneracy of 2Ip + 1 = 2 for each hydrogen

7We assume the temperature is low enough that we can ignore electronic excitations.
8Note that for linear polyatomic molecules such as CO2 and HCN, we must treat the molecule as a rotor, i.e. we use eqn.

4.261 of the notes.
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nucleus and 2Id + 1 = 3 for each deuterium nucleus. The symmetry factor is analyzed as follows. For
methane CH4, there are four threefold symmetry axes, resulting in gsym = 12. The same result holds
for CD4. For CH3D or CHD3, there is a single threefold axis, hence gsym = 3. For CH2D2, the two
hydrogen nuclei lie in a plane together with the carbon, and the two deuterium nuclei lie in a second
plane together with the carbon. The intersection of these two planes provides a twofold symmetry axis,
about which a 180◦ rotation will rotate one hydrogen into the other and one deuterium into the other.
Thus gsym = 2.

To analyze the rotational partition function, we need the product I1I2I3 of the principal moments of
inertia, which is to say the determinant of the inertia tensor det I . We work here in units of amu for mass
and 1√

3
times the C−H separation for distance. The inertia tensor is

Iαβ =
∑

j

mj

(
r
2
j δαβ − rαj r

β
j

)
+M

(
R

2 δαβ −RαRβ
)

where

M =
∑

j

mj

R =M−1
∑

j

mjrj .

The locations of the four hydrogen/deuterium ions are:

L1 : (+1,+1,+1)

L2 : (+1,−1,−1)

L3 : (−1,+1,−1)

L4 : (−1,−1,+1) .

For CH4 we have M = 16 and R = 0. The inertia tensor is

ICH
4
=



8 0 0
0 8 0
0 0 8


 .

Similarly, for CD4 we have

ICD4
=



16 0 0
0 16 0
0 0 16


 .

For CH3D, there is an extra mass unit located at L1 relative to methane, so M = 17. The CM is at
R = 1

17 (+1,+1,+1). According to the general formula above for Iαβ , thie results in two changes to the
inertia tensor, relative to ICH4

. We find

∆I =




2 −1 −1
−1 2 −1
−1 −1 2


+

1

17




2 −1 −1
−1 2 −1
−1 −1 2


 ,
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mass M degeneracy symmetry det I
molecule (amu) factor gnuc factor gsym (amu) · a2/3

CH4 16 24 = 16 4× 3 = 12 83

CH3D 17 23 · 3 = 24 1× 3 = 3 8 ·
(
11 + 3

17

)2

CH2D2 18 22 · 32 = 36 1× 2 = 2 12 ·
(
8 + 2

9

)
·
(
16 + 2

9

)

CHD3 19 2 · 33 = 54 1× 3 = 3 16 ·
(
13 + 3

19

)2

CD4 20 34 = 81 4× 3 = 12 163

Table 8: Nuclear degeneracy, symmetry factor, and I1I2I3 product for successively deuterated methane.

where the first term accounts for changes in I in the frame centered at the carbon atom, and the second
term shifts to the center-of-mass frame. Thus,

ICH3D
=




10 + 2
17 −18

17 −18
17

−18
17 10 + 2

17 −18
17

−18
17 −18

17 10 + 2
17




.

For CHD3, we regard the system as CD4 with a missing mass unit at L1, hence M = 19. The CM is now
at R = 1

17(−1,−1,−1). The change in the inertia tensor relative to ICD4
is then

∆I = −




2 −1 −1
−1 2 −1
−1 −1 2


+

1

19




2 −1 −1
−1 2 −1
−1 −1 2


 .

Thus,

ICHD3
=




14 + 2
19

18
19

18
19

18
19 14 + 2

19
18
19

18
19

18
19 14 + 2

19




.

Finally, for CH2D2. we start with methane and put extra masses at L1 and L2, so M = 18 and R =
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1
9(+1, 0, 0). Then

∆I = −



4 0 0
0 4 −2
0 −2 4


+

2

9



0 0 0
0 1 0
0 0 1




and

ICH2D2
=




12 0 0

0 12 + 2
9 −2

0 −2 12 + 2
9




.

For the vibrations, absent a specific model for the small oscillations problem the best we can do is to say
that adding mass tends to lower the normal mode frequencies since ω ∼

√
k/M .
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0.5 Quantum Statistics

(5.1) For a system of noninteracting S = 0 bosons obeying the dispersion ε(k) = ~v|k|.

(a) Find the density of states per unit volume g(ε).

(b) Determine the critical temperature for Bose-Einstein condensation in three dimensions.

(c) Find the condensate fraction n0/n for T < Tc.

(d) For this dispersion, is there a finite transition temperature in d = 2 dimensions? If not, explain

why. If so, compute T
(d=2)
c .

Solution :

(a) The density of states in d dimensions is

g(ε) =

∫
ddk

(2π)d
δ(ε − ~vk) =

Ωd

(2π)d
εd−1

(~v)d
.

(b) The condition for T = Tc is to write n = n(Tc, µ = 0):

n =

∞∫

0

dε
g(ε)

eε/kBTc − 1
=

1

2π2(~v)3

∞∫

0

dε
ε2

eε/kBTc − 1
=
ζ(3)

π2

(
k
B
Tc

~v

)3
.

Thus,

k
B
Tc =

(
π2

ζ(3)

)1/3
~v n1/3 .

(c) For T < Tc, we have

n = n0 +
ζ(3)

π2

(
k
B
T

~v

)3
⇒ n0

n
= 1−

(
T

Tc(n)

)3
.

(d) In d = 2 we have

n =
1

2π(~v)2

∞∫

0

dε
ε

eε/kBTc − 1
=
ζ(2)

2π

(
k
B
Tc

~v

)2
⇒ k

B
T (d=2)
c = ~v

√
2πn

ζ(2)
.
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(5.2) Consider a three-dimensional Fermi gas of S = 1
2 particles obeying the dispersion relation ε(k) =

A |k|4.

(a) Compute the density of states g(ε).

(b) Compute the molar heat capacity at low temperatures.

(c) Compute the lowest order nontrivial temperature dependence for µ(T ) at low temperatures. I.e.
compute the O(T 2) term in µ(T ).

Solution :

(a) The density of states in d = 3, with g = 2S+1 = 2, is given by

g(ε) =
1

π2

∞∫

0

dk k2 δ
(
ε− ε(k)

)
=

1

π2
k2(ε)

dk

dε

∣∣∣∣∣
k=(ε/A)1/4

=
ε−1/4

4π2A3/4
.

(b) The molar heat capacity is

cV =
π2

3n
Rg(ε

F
) k

B
T =

π2R

4
· kB

T

εF
,

where ε
F
= ~2k2

F
/2m can be expressed in terms of the density using kF = (3π2n)1/3, which is valid for

any isotropic dispersion in d = 3. In deriving this formula we had to express the density n, which enters
in the denominator in the above expression, in terms of ε

F
. But this is easy:

n =

ε
F∫

0

dε g(ε) =
1

3π2

(
ε
F

A

)3/4
.

(c) We have (Lecture Notes, ch. 5)

δµ = −π
2

6
(k

B
T )2

g′(ε
F
)

g(ε
F
)
=
π2

24
· (kB

T )2

εF
.

Thus,

µ(n, T ) = ε
F
(n) +

π2

24
· (kB

T )2

ε
F
(n)

+O(T 4) ,

where ε
F
(n) = A (3π2n)4/3.
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(5.3) A bosonic gas is known to have a power law density of states g(ε) = Aεσ per unit volume, where
σ is a real number.

(a) Experimentalists measure Tc as a function of the number density n and make a log-log plot of their
results. They find a beautiful straight line with slope 3

7 . That is, Tc(n) ∝ n3/7. Assuming the phase
transition they observe is an ideal Bose-Einstein condensation, find the value of σ.

(b) For T < Tc, find the heat capacity CV .

(c) For T > Tc, find an expression for p(T, z), where z = eβµ is the fugacity. Recall the definition of
the polylogarithm (or generalized Riemann zeta function)9,

Liq(z) ≡
1

Γ(q)

∞∫

0

dt
tq−1

z−1et − 1
=

∞∑

n=1

zn

nq
,

where Γ(q) =
∞∫
0

dt tq−1 e−t is the Gamma function.

(d) If these particles were fermions rather than bosons, find (i) the Fermi energy ε
F
(n) and (ii) the

pressure p(n) as functions of the density n at T = 0.

Solution :

(a) At T = Tc, we have µ = 0 and n0 = 0, hence

n =

∞∫

−∞

dε
g(ε)

eε/kBTc − 1
= Γ(1 + σ) ζ(1 + σ)A (k

B
Tc)

1+σ .

Thus, Tc ∝ n
1

1+σ = n3/7 which means σ = 4
3 .

(b) For T < Tc we have µ = 0, but the condensate carries no energy. Thus,

E = V

∞∫

−∞

dε
ε g(ε)

eε/kBT − 1
= Γ(2 + σ) ζ(2 + σ)A (k

B
T )2+σ

= Γ
(
10
3

)
ζ
(
10
3

)
A (k

B
T )10/3 .

Thus,

CV = Γ
(
13
3

)
ζ
(
10
3

)
A (k

B
T )7/3 ,

where we have used z Γ(z) = Γ(z + 1).

9Some sources use the notation ζq(z) for the polylogarithm, but for those of you who have yet to master the scribal com-
plexities of the Greek ζ, you can use the notation Liq(z) instead.
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(c) The pressure is p = −Ω/V , which is

p(T, z) = −k
B
T

∞∫

−∞

dε g(ε) ln
(
1− z e−ε/k

B
T
)
= −Ak

B
T

∞∫

0

dε εσ ln
(
1− z e−ε/k

B
T
)

=
A

1 + σ

∞∫

0

dε
ε1+σ

z−1 eε/kBT − 1
= Γ(1 + σ)A (k

B
T )2+σ Li2+σ(z)

= Γ
(
7
3

)
A (k

B
T )10/3 Li10/3(z) .

(d) The Fermi energy is obtained from

n =

ε
F∫

0

dε g(ε) =
Aε1+σ

F

1 + σ
⇒ ε

F
(n) =

(
(1 + σ)n

A

) 1

1+σ

=

(
7n

3A

)3/7
.

We obtain the pressure from p = −
(
∂E
∂V

)
N

. The energy is

E = V

ε
F∫

0

dε g(ε) ε = V · Aε
2+σ
F

2 + σ
∝ V − 1

1+σ .

Thus, p = 1
1+σ · E

V , i.e.

p(n) =
Aε2+σ

F

(1 + σ)(2 + σ)
= 3

10

(
7
3

)3/7
A−3/7n10/7 .
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(5.4) At low energies, the conduction electron states in graphene can be described as fourfold degenerate
fermions with dispersion ε(k) = ~v

F
|k|. Graphene is a two-dimensional sheet of carbon. Using the

Sommerfeld expension,

(a) Find the density of single particle states g(ε).

(b) Find the chemical potential µ(T, n) up to terms of order T 4.

(c) Find the energy density E(T, n) = E/V up to terms of order T 4.

Solution :

(a) The DOS per unit volume is

g(ε) = 4

∫
d2k

(2π)2
δ(ε − ~v

F
k) =

2ε

π(~v
F
)2

.

(b) The Sommerfeld expansion is

∞∫

−∞

dε f(ε− µ) φ(ε) =

µ∫

−∞

dε φ(ε) +
π2

6
(kT )2 φ′(µ) +

7π4

360
(k

B
T )4 φ′′′(µ) + . . . .

For the particle density, set φ(ε) = g(ε), in which case

n =
1

π

(
µ

~v
F

)2
+
π

3

(
k
B
T

~v
F

)2
.

The expansion terminates after the O(T 2) term. Solving for µ,

µ(T, n) = ~v
F
(πn)1/2

[
1− π

3n

(
k
B
T

~v
F

)2]1/2

= ~v
F
(πn)1/2

{
1− π

6n

(
k
B
T

~v
F

)2
− π2

72n2

(
k
B
T

~v
F

)4
+ . . .

}

(c) For the energy density E , we take φ(ε) = ε g(ε), whence

E(T, n) = 2µ

3π

[(
µ

~v
F

)2
+

(
πk

B
T

~v
F

)2]

= 2
3

√
π ~v

F
n3/2

{
1 +

π

2n

(
k
B
T

~v
F

)2
− π2

8n2

(
k
B
T

~v
F

)4
+ . . .

}
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(5.5) Consider a system of N spin-12 particles occupying a volume V at temperature T . Opposite spin
fermions may bind in a singlet state to form a boson:

f ↑ + f ↓ ⇋ b

with a binding energy −∆ < 0. Assume that all the particles are nonrelativistic; the fermion mass is
m and the boson mass is 2m. Assume further that spin-flip processes exist, so that the ↑ and ↓ fermion

species have identical chemical potential µf .

(a) What is the equilibrium value of the boson chemical potential, µb? Hint : the answer is µb = 2µf .

(b) Let the total mass density be ρ. Derive the equation of state ρ = ρ(µf , T ), assuming the bosons
have not condensed. You may wish to abbreviate

Lip(z) ≡
∞∑

n=1

zn

np
.

(c) At what value of µf do the bosons condense?

(d) Derive an equation for the Bose condensation temperature Tc. Solve this equation for Tc in the

limits ε0 ≪ ∆ and ε0 ≫ ∆, respectively, where

ε0 ≡
π~2

m

(
ρ/2m

ζ
(
3
2

)
)2/3

.

(e) What is the equation for the condensate fraction ρ0(T, ρ)/ρ when T < Tc?

Solution :

(a) The chemical potential is the Gibbs free energy per particle. If the fermion and boson species are to
coexist at the same T and p, the reaction f ↑ +f ↓ ⇋ b must result in ∆G = µb − 2µf = 0.

(b) For T > Tc,

ρ = −2mλ−3
T Li3/2

(
− eµf

/k
B
T
)
+ 2

√
8mλ−3

T Li3/2
(
e(2µf

+∆)/k
B
T
)

,

where λT =
√

2π~2/mk
B
T is the thermal wavelength for particles of mass m. This formula accounts

for both fermion spin polarizations, each with number density nf↑ = nf↓ = −λ−3
T Li3/2(−zf) and the

bosons with number density
√
8λ−3

T Li3/2(zb e
β∆), with zb = z2f due to chemical equilibrium among the

species. The factor of 23/2 =
√
8 arises from the fact that the boson mass is 2m, hence the boson thermal

wavelength is λT /
√
2.

(c) The bosons condense when µb = −∆, the minimum single particle energy. This means µf = −1
2∆.

The equation of state for T < Tc is then

ρ = −2mλ−3
T Li3/2

(
− e−∆/2k

B
T
)
+ 4

√
2 ζ
(
3
2

)
mλ−3

T + ρ0 ,
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where ρ0 is the condensate mass density.

(d) At T = Tc we have ρ0 = 0, hence

ρ

2m

(
2π~2

mk
B
Tc

)3/2
=

√
8 ζ
(
3
2

)
− Li3/2

(
− e−∆/2k

B
Tc
)

,

which is a transcendental equation. Om. In the limit where ∆ is very large, we have

Tc(∆ ≫ ε0) =
π~2

mk
B

(
ρ/2m

ζ
(
3
2

)
)2/3

=
ε0
k
B

.

In the opposite limit, we have ∆ → 0+ and −Li3/2(−1) = η(3/2), where η(s) is the Dirichlet η-function,

η(s) =

∞∑

j=1

(−1)j−1 j−s =
(
1− 21−s

)
ζ(s) .

Then

Tc(∆ ≪ ε0) =
2ε0/kB(

1 + 3
2

√
2
)2/3 .

(e) The condensate fraction is

ν =
ρ0
ρ

= 1−
(
T

Tc

)3/2
·
√
8 ζ
(
3
2

)
− Li3/2

(
− e−∆/2k

B
T
)

√
8 ζ
(
3
2

)
− Li3/2

(
− e−∆/2k

B
Tc

) .

Note that as ∆ → −∞ we have −Li3/2
(
− e−∆/2k

B
T
)
→ 0 and the condensate fraction approaches the

free boson result, ν = 1− (T/Tc)
3/2. In this limit there are no fermions present.
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(5.6) A three-dimensional system of spin-0 bosonic particles obeys the dispersion relation

ε(k) = ∆ +
~2k2

2m
.

The quantity ∆ is the formation energy and m the mass of each particle. These particles are not con-
served – they may be created and destroyed at the boundaries of their environment. (A possible exam-
ple: vacancies in a crystalline lattice.) The Hamiltonian for these particles is

H =
∑

k

ε(k) n̂k +
U

2V
N̂2 ,

where n̂k is the number operator for particles with wavevector k, N̂ =
∑

k n̂k is the total number of
particles, V is the volume of the system, and U is an interaction potential.

(a) Treat the interaction term within mean field theory. That is, define N̂ = 〈N̂〉+δN̂ , where 〈N̂ 〉 is the
thermodynamic average of N̂ , and derive the mean field self-consistency equation for the number
density ρ = 〈N̂〉/V by neglecting terms quadratic in the fluctuations δN̂ . Show that the mean field
Hamiltonian is

HMF = −1
2V Uρ

2 +
∑

k

[
ε(k) + Uρ

]
n̂k ,

(b) Derive the criterion for Bose condensation. Show that this requires ∆ < 0. Find an equation

relating Tc, U , and ∆.

Solution :

(a) We write

N̂2 =
(
〈N̂ 〉+ δN̂

)2

= 〈N̂〉2 + 2〈N̂ 〉 δN̂ + (δN̂ )2

= −〈N̂〉2 + 2〈N̂〉 N̂ + (δN̂ )2 .

We drop the last term, (δN̂ )2, because it is quadratic in the fluctuations. This is the mean field assump-
tion. The Hamiltonian now becomes

HMF = −1
2V Uρ

2 +
∑

k

[
ε(k) + Uρ

]
n̂k ,

where ρ = 〈N̂〉/V is the number density. This, the dispersion is effectively changed, to

ε̃(k) =
~2k2

2m
+∆+ Uρ .

The average number of particles in state
∣∣k
〉

is given by the Bose function,

〈n̂k〉 =
1

exp
[
ε̃(k)/k

B
T
]
− 1

.
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Summing over all k states, and using

1

V

∑

k

−→
∫

d3k

(2π)3
,

we obtain

ρ =
1

V

∑

k

〈n̂k〉

= ρ0 +

∫
d3k

(2π)3
1

e~
2k2/2mk

B
T e(∆+Uρ)/k

B
T − 1

= ρ0 +

∞∫

0

dε
g(ε)

e(ε+∆+Uρ)/k
B
T − 1

where ρ0 = 〈n̂k=0〉/V is the number density of the k = 0 state alone, i.e. the condensate density. When

there is no condensate, ρ0 = 0. The above equation is the mean field equation. It is equivalent to
demanding ∂F/∂ρ = 0, i.e. to extremizing the free energy with respect to the mean field parameter ρ.
Though it is not a required part of the solution, we have here written this relation in terms of the density
of states g(ε), defined according to

g(ε) ≡
∫

d3k

(2π)3
δ

(
ε− ~2k2

2m

)
=

m3/2

√
2π2~3

√
ε .

(b) Bose condensation requires
∆+ Uρ = 0 ,

which clearly requires ∆ < 0. Writing ∆ = −|∆|, we have, just at T = Tc,

ρ(Tc) =
|∆|
U

=

∫
d3k

(2π)3
1

e~2k2/2mkBTc − 1
,

since ρ0(Tc) = 0. This relation determines Tc. Explicitly, we have

|∆|
U

=

∞∫

0

dε g(ε)
∞∑

j=1

e−jε/kBTc

= ζ
(
3
2

)(mk
B
Tc

2π~2

)3/2
,

where ζ(ℓ) =
∑∞

n=1 n
−ℓ is the Riemann zeta function. Thus,

Tc =
2π~2

mk
B

( |∆|
ζ
(
3
2

)
U

)2/3
.



106 LIST OF FIGURES

(5.7) A three-dimensional gas of particles obeys the dispersion ε(k) = Ak5/2. There are no internal
degrees of freedom (i.e. the degeneracy factor is g = 1). The number density is n.10

(a) Compute the single particle density of states g(ε).

(b) For bosons, compute the condensation temperature T
BEC

(n).

(c) For fermions, compute the ground state energy density e0(n).

(d) For photon statistics, compute the temperature T (n).

(e) For photon statistics, compute the entropy density s(n) = S/V .

(f) For bosons and fermions, compute the second virial coefficient B2(T ).

Solution :

(a) With ε = Akσ we have k(ε) = (ε/A)1/σ , and

g(ε) =
1

2π2
k2

ε′(k)

∣∣∣∣
k=k(ε)

=
ε

3
σ
−1

2π2σA3/σ
=

ε1/5

5π2A6/5
.

(b) The number density n(T, z, n0) for bosons, in the grand canonical ensemble, is

n(T, z, n0) =

∞∫

0

dε
g(ε)

z−1eε/kBT − 1
+ n0 ,

where n0 is the condensate density. For T < T
BEC

, we have z = 1 and n0 > 0. For T > T
BEC

, we have
z < 1 and n0 = 0. Precisely at T = T

BEC
, both conditions apply: z = 1 and n0 = 0. Thus,

n =

∞∫

0

dε
g(ε)

eε/kBTc − 1
=

Γ
(
3
σ

)
ζ
(
3
σ

)

2π2σ

(
k
B
Tc
A

)3/σ
=

Γ
(
6
5

)
ζ
(
6
5

)

5π2

(
k
B
Tc
A

)6/5
.

Thus,

T
BEC

(n) =

(
2π2σ n

Γ
(
3
σ

)
ζ
(
3
σ

)
)σ/3

· A
kB

=

(
5π2n

Γ
(
6
5

)
ζ
(
6
5

)
)5/6

· A
kB

.

(c) The ground state energy density for spinless (i.e. g = 1) fermions is

ε0 =
E0

V
=

∫
d3k

(2π)3
Akσ Θ(k

F
− k) =

A

2π2
k3+σ
F

3 + σ
.

10We will solve the problem for the more general dispersion ε(k) = Akσ and then indicate the result for σ = 5

2
.
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The number density is

n =
N

V
=

∫
d3k

(2π)3
Θ(k

F
− k) =

k3
F

6π2
=⇒ k

F
=
(
6π2n

)1/3
.

Thus,

ε0(n) =

(
6π2
)σ/3

1 + σ
3

· An1+σ
3 = 6

11

(
6π2
)5/6 ·An11/6 .

(d) The photon density is

n =

∞∫

0

dε
g(ε)

eε/kBT − 1
,

which is the same expression as in part (b) above! Thus,

T (n) =

(
2π2σ n

Γ
(
3
σ

)
ζ
(
3
σ

)
)σ/3

· A
kB

=

(
5π2n

Γ
(
6
5

)
ζ
(
6
5

)
)5/6

· A
kB

.

(e) The grand potential is

Ω(T, V ) = V k
B
T

∞∫

0

dε g(ε) ln
(
1− e−ε/k

B
T
)
= −V

∞∫

0

dε
H(ε)

eε/kBT − 1
,

where g(ε) = H ′(ε). Integrating g(ε) to obtain H(ε), we have

Ω(T, V ) = − V

6π2A3/σ

∞∫

0

dε
ε3/σ

eε/kBT − 1
= −Γ

(
3
σ + 1

)
ζ
(
3
σ

)

6π2A3/σ
V
(
k
B
T
)1+ 3

σ

The entropy density is then

s(T ) = − 1

V

∂Ω

∂T
=

Γ
(
3
σ + 2

)
ζ
(
3
σ + 1

)

6π2

(
k
B
T

A

)3/σ
k
B

,

The number density, as we have seen, is

n(T ) =
Γ
(
3
σ

)
ζ
(
3
σ

)

2π2σ

(
k
B
T

A

)3/σ
,

hence

s(n) =
ζ
(
3
σ + 1

)

ζ
(
3
σ

) ·
(
3
σ + 1

)
nk

B
=
ζ
(
11
5

)

ζ
(
6
5

) · 11
5 nkB

.

On dimensionful grounds, we knew a priori that s(n) ∝ nk
B

.
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(f) We have

n =

∞∫

0

dε
g(ε)

z−1eε/kBT − 1
= ± Γ

(
3
σ

)

2π2σ

(
k
B
T

A

)3/σ
Li 3

σ
(±z)

p

k
B
T

=

∞∫

0

dε
H(ε)

z−1eε/kBT − 1
= ± Γ

(
3
σ

)

2π2σ

(
k
B
T

A

)3/σ
Li 3

σ
+1

(±z) ,

where the top sign is for bosons and the bottom for fermions. It helps to define the thermal wavelength

λT ≡
(
2π2σ

Γ
(
3
σ

)
)1/3

·
(
k
B
T

A

)1/σ
=

(
5π2

Γ
(
6
5

)
)1/3( A

k
B
T

)2/5
,

so

nλ3T = ± Li 3
σ
(±z) = z ± 2−3/σz2 +O

(
z3
)

pλ3T
k
B
T

= ± Li 3
σ
+1

(±z) = z ± 2−1−(3/σ)z2 +O
(
z3
)

.

From the first of these, we have

z = nλ3T ∓ 2−3/σn2λ6T +O
(
n3λ9T

)
.

Substituting this into the second equation, we obtain the lowest nontrivial term in the virial expansion
of the equation of state:

p

k
B
T

= n∓ 2−1−(3/σ) n2λ3T +O
(
n3λ6T

)
.

The second virial coefficient is then

B2(T ) = ∓2−1−(3/σ) λ3T = ∓ 5π2

211/5 Γ
(
6
5

)
(

A

k
B
T

)6/5
.



0.5. QUANTUM STATISTICS 109

(5.8) Consider a three-dimensional gas of noninteracting quantum particles with dispersion ε(k) =
A |k|3/2.

(a) Find the single particle density of states per unit volume g(ε).

(b) Find expressions for n(T, z) and p(T, z), each expressed as power series in the fugacity z, for both
Bose-Einstein and Fermi-Dirac statistics.

(c) Find the virial expansion for the equation of state up to terms of order n3, for both bosons and
fermions.

Solution :

(a) The density of states for dispersion ε(k) = A |k|σ is

g(ε) = g

∫
ddk

(2π)d
δ
(
ε−Akσ

)

=
gΩd

(2π)d

∞∫

0

dk kd−1 δ
(
k − (ε/A)1/σ

)

σAkσ−1
= D ε

d
σ
−1 ,

with

D =
2g

(2
√
π)d σΓ(d/2)

A−d/σ .

(b) We have

n(T, z) =
∞∑

j=1

(±1)j−1 Cj(T ) z
j

p(T, z) = k
B
T

∞∑

j=1

(±1)j−1 zj j−1 Cj(T ) z
j ,

where

Cj(T ) =

∞∫

0

dε g(ε) e−jε/k
B
T = D Γ(d/σ)

(
k
B
T

j

)d/σ
.

Thus, we have

±nvT =
∞∑

j=1

j−r (±z)j

± pvT /kB
T =

∞∑

j=1

j−(r+1) (±z)j ,
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where r = d/σ and

vT =
1

D Γ(d/σ) (k
B
T )d/σ

=
(2
√
π)dσ Γ(d/2)

2gD Γ(d/σ)

(
A

k
B
T

)d/σ
.

has dimensions of volume.

(c) We now let x = ±z, and interrogate Mathematica:

In[1]= y = InverseSeries [ x + x^2/2^r + x^3/3^r + x^4/4^r + O[x]^5 ]

In[2]= w = y + y^2/2^(r+1) + y^3/3^(r+1) + y^4/4^(r+1) + O[y]^5 .

The result is
p = nk

B
T
[
1 +B2(T )n +B3(T )n

2 + . . .
]

,

where

B2(T ) = ∓2−(r+1) vT

B3(T ) =
(
2−2r − 2 · 3−(r+1)

)
v2T

B4(T ) = ±2−(3r+1) 31−r
(
22r+1 − 5 · 3r−1 − 2r−1 3r

)
v3T .

Substitute σ = 3
2 to find the solution for the conditions given.
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(5.9) You know that at most one fermion may occupy any given single-particle state. A parafermion is a
particle for which the maximum occupancy of any given single-particle state is k, where k is an integer
greater than zero. (For k = 1, parafermions are regular everyday fermions; for k = ∞, parafermions are
regular everyday bosons.) Consider a system with one single-particle level whose energy is ε, i.e. the
Hamiltonian is simply H = εn, where n is the particle number.

(a) Compute the partition function Ξ(µ, T ) in the grand canonical ensemble for parafermions.

(b) Compute the occupation function n(µ, T ). What is n when µ = −∞? When µ = ε? When µ =
+∞? Does this make sense? Show that n(µ, T ) reduces to the Fermi and Bose distributions in the
appropriate limits.

(c) Sketch n(µ, T ) as a function of µ for both T = 0 and T > 0.

Solution:

The general expression for Ξ is

Ξ =
∏

α

∑

nα

(
z e−βεα

)nα .

Now the sum on n runs from 0 to k, and

k∑

n=0

xn =
1− xk+1

1− x
.

(a) Thus,

Ξ =
1− e(k+1)β(µ−ε)

1− eβ(µ−ε)
.

Figure 22: labelpara k = 3 parafermion occupation number versus ε − µ for kBT = 0, kBT = 0.25,
kBT = 0.5, and kBT = 1.



112 LIST OF FIGURES

(b) We then have

n = −∂Ω
∂µ

=
1

β

∂ ln Ξ

∂µ

=
1

eβ(ε−µ) − 1
− k + 1

e(k+1)β(ε−µ) − 1

(c) A plot of n(ε, T, µ) for k = 3 is shown in Fig. ??. Qualitatively the shape is that of the Fermi function
f(ε − µ). At T = 0, the occupation function is n(ε, T = 0, µ) = kΘ(µ − ε). This step function smooths
out for T finite.

(d) For each k < ∞, the occupation number n(z, T ) is a finite order polynomial in z, and hence an
analytic function of z. Therefore, there is no possibility for Bose condensation except for k = ∞.
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(5.10) A gas of quantum particles with photon statistics has dispersion ε(k) = A |k|4.

(a) Find the single particle density of states per unit volume g(ε).

(b) Repeat the arguments of §5.5.2 in the Lecture Notes for this dispersion.

(c) Assuming our known values for the surface temperature of the sun, the radius of the earth-sun
orbit, and the radius of the earth, what would you expect the surface temperature of the earth to
be if the sun radiated particles with this dispersion instead of photons?

Solution :

(a) See the solution to part (a) of problem 8 above. For d = 3 and σ = 4 we have

g(ε) =
g

2π2
A−3/4 ε−1/4 .

(b) Scaling volume by λ scales the lengths by λ1/3, the quantized wavevectors by λ−1/3, and the energy
eigenvalues by λ−4/3, since ε ∝ k4. Thus,

p = −
(
∂E

∂V

)

S

=
4E

3V
,

which says (
∂E

∂V

)

T

= T

(
∂p

∂T

)

V

− p = 3
4 p ⇒ p(T ) = B T 7/4 .

Indeed,

p(T ) = −k
B
T

∞∫

−∞

g(ε) ln
(
1− e−ε/k

B
T
)

= − g

2π2A3/4
(k

B
T )7/4

∞∫

−∞

du u−1/4 ln(1− e−u) .

(c) See §5.5.5 of the Lecture Notes. Assume a dispersion of the form ε(k) for the (nonconserved) bosons.
Then the energy current incident on a differential area dA of surface normal to ẑ is

dP = dA ·
∫

d3k

(2π)3
Θ(cos θ) · ε(k) · 1

~

∂ε(k)

∂kz
· 1

eε(k)/kBT − 1
.

Note that
∂ε(k)

∂kz
=
kz
k

∂ε

∂k
= cos θ ε′(k) .
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Now let us assume a power law dispersion ε(k) = Akα. Changing variables to t = Akα/k
B
T , we find

dP

dA
= σ T 2+ 2

α ,

where

σ = ζ
(
2 + 2

α

)
Γ
(
2 + 2

α

)
· g k

2+ 2
α

B A− 2
α

8π2~
.

One can check that for g = 2, A = ~c, and α = 1 that this result reduces to Stefan’s Law. Equating the

power incident on the earth to that radiated by the earth,

4πR2
⊙ · σT 2(1+α−1)

⊙ · πR
2
e

4πa2e
= 4πR2

e · σT 2(1+α−1)
e ,

which yields

Te =

(
R⊙
2ae

) α
α+1

T⊙ .

Plugging in the appropriate constants and setting α = 4, we obtain Te = 45.2K. Brrr!
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(5.11) Consider a three-dimensional ultrarelativistic gas, with dispersion ε = ~c|k|. Find the viral ex-
pansion of the equation of state p = p(n, T ) to order n3 for both bosons and fermions.

Solution : We have

βp = ∓g

∫
d3k

(2π)3
ln
(
1∓ z e−βε(k)

)

z = g

∫
d3k

(2π)3
1

z−1 eβε(k) ∓ 1
,

where g is the degeneracy of each k mode. WIth ε(k) = ~ck, we change variables to t = β~ck and find

βp =
g

6π2

(
k
B
T

~c

)3 ∞∫

−∞

dt
t3

z−1 et ∓ 1
=

g

π2

(
k
B
T

~c

)3 ∞∑

j=1

(±1)j−1 z
j

j4

n =
g

2π2

(
k
B
T

~c

)3 ∞∫

−∞

dt
t2

z−1 et ∓ 1
=

g

π2

(
k
B
T

~c

)3 ∞∑

j=1

(±1)j−1 z
j

j3
,

where we have integrated by parts in the first of these equations. Now it’s time to ask Mathematica :

In[1] = y = InverseSeries [ x + x^2/2^3 + x^3/3^3 + x^4/4^3 + x^5/5^3 + O[x]^6 ]

Out[1] = x -
x^2

8
-

5 x^3

864
-

31 x^4

13 824
-

56 039 x^5

62 208 000
+ O[x]^6

In[2] = w = y + y^2/2^4 + y^3/3^4 + y^4/4^4 + y^5/5^4

Out[2] = x -
x^2

16
-

47 x^3

5184
-

25 x^4

9216
-

2 014 561 x^5

1 866 240 000
+ O[x]^6

So with the definition

λT = π2/3 g−1/3 ~c

k
B
T

,

we have
p = nk

B
T
(
1 +B2 n+B3 n

2 + . . .
)

,

where

B2 = ∓ 1
16 λ

3
T , B3 = − 47

5184 λ
6
T , B4 = ∓ 25

9216 λ
9
T , B4 = − 2014561

1866240000 λ
12
T .
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(5.12) Almost all elements freeze into solids well before they can undergo Bose condensation. Setting the
Lindemann temperature equal to the Bose condensation temperature, show that this implies a specific
ratio of k

B
Θ

D
to ~2/Ma2, where M is the atomic mass and a is the lattice spacing. Evaluate this ratio for

the noble gases He, Ne, Ar, Kr, and Xe. (You will have to look up some numbers.)

Solution : The Lindemann melting temperature TM and the Bose condensation temperature Tc for
monatomic solids are given by

TM = x2 · Mk
B
Θ2

D
a2

9~2
, Tc =

2π~2

Mk
B

(
n

ζ(3/2)

)2/3
,

where a is the lattice constant, M the atomic mass, and Θ
D

the Debye temperature. For a simple cubic
lattice, the number density is n = a−3. Helium solidifies into a hexagonal close packed (HCP) structure,
while Neon, Argon, Krypton, and Xenon solidify into a face-centered cubic (FCC) structure. The unit
cell volume for both HCP and FCC is a3/

√
2, where a is the lattice spacing, so n =

√
2 a−3 for the rare

gas solids. Thus, we find

TM
Tc

=
x

α
·
(

k
B
Θ

D

~2/Ma2

)2
.

where

α = 18π

( √
2

ζ(3/2)

)2/3
≈ 40 .

If we set x = 0.1 we find x
α ≈ 1

400 . Now we need some data for Θ
D

and a. The most convenient table
of data I’ve found is from H. Glyde’s article on solid helium in the Encyclopedia of Physics. The table
entry for 4He is for the BCC structure at a pressure p = 25 bar. For a BCC structure the unit cell volume
is 4a3/3

√
3. Define the ratio R ≡ k

B
Θ

D
/(~2/Ma2).

As one can see from Tab. 9 and from the above equation for TM/Tc. theR values are such that the melting
temperature is predicted to be several orders of magnitude higher than the ideal Bose condensation
temperature in every case except 4He, where the ratio is on the order of unity (and is less than unity if
the actual melting temperature is used). The reason that 4He under high pressure is a solid rather than
a Bose condensate at low temperatures is because the 4He atoms are not free particles.

crystal a (Å) M (amu) Θ
D

(K) T actual
M (K) Tc ~2/Ma2k

B
(K) R

4He 3.57 4.00 25 1.6 3.9 0.985 25

Ne 4.46 20.2 66 24.6 0.50 0.125 530

Ar 5.31 39.9 84 83.8 0.18 0.0446 1900

Kr 5.65 83.8 64 161.4 0.076 0.0188 3400

Xe 6.13 131 55 202.0 0.041 0.0102 20000

Table 9: Lattice constants for Ne, Ar, Kr, and Xe from F. W. de Wette and R. M. J. Cotterill, Solid State
Comm. 6, 227 (1968). Debye temperatures and melting temperatures from H. Glyde, Solid Helium in
Encyclopedia of Physics. 4He data are for p = 25 bar, in the bcc phase (from Glyde).
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(5.13) A nonrelativistic Bose gas consists of particles of spin S = 1. Each boson has massm and magnetic

moment µ0. A gas of these particles is placed in an external field H .

(a) What is the relationship of the Bose condensation temperatureTc(H) to Tc(H = 0) whenµ0H ≫ k
B
T ?

(b) Find the magnetization M for T < Tc when µ0H ≫ k
B
T . Calculate through order exp(−µ0H/kB

T ).

Solution :

The number density of bosons is given by

n(T, z) = λ−3
T

{
Li3/2

(
z eµ0H/k

B
T
)
+ Li3/2

(
z
)
+ Li3/2

(
z e−µ0H/k

B
T
)}

.

The argument of Liz(z) cannot exceed unity, thus Bose condensation occurs for z = exp(−µ0H/kB
T )

(assuming H > 0). Thus, the condition for Bose condensation is given by

nλ3Tc
= ζ(3/2) + Li3/2

(
e−µ0H/k

B
Tc
)
+ Li3/2

(
e−2µ0H/k

B
Tc
)

.

This is a transcendental equation for T = Tc(n,H). In the limit µ0H ≫ k
B
Tc, the second two terms

become negligible, since

Lis(z) =

∞∑

j=1

zj

js
.

Thus,

Tc(H → ∞) =
2π~2

m

(
n

ζ(3/2)

)2/3
.

When H = 0, we have Thus,

Tc(H → 0) =
2π~2

m

(
n

3 ζ(3/2)

)2/3
.

Thus,
Tc(H → ∞)

Tc(H → 0)
= 32/3 = 2.08008 . . .

The magnetization density is

M = µ0 λ
−3
T

{
Li3/2

(
z eµ0H/k

B
T
)
− Li3/2

(
z e−µ0H/k

B
T
)}

.

For T < Tc, we have z = exp(−µ0H/kB
T ) and therefore

M = µ0 λ
−3
T

{
ζ(3/2)−

∞∑

j=1

j−3/2 e−2jµ0H/k
B
T
}

= nµ0

{
1− e−2µ0H/k

B
T

ζ(3/2)
+O

(
e−4µ0H/k

B
T
)
}
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(5.14) Consider a set of N noninteracting S = 1
2 fermions in a one-dimensional harmonic oscillator

potential. The oscillator frequency is ω. For k
B
T ≪ ~ω, find the lowest order nontrivial contribution to

the heat capacity C(T ), using the ordinary canonical ensemble. The calculation depends on whether N
is even or odd, so be careful! Then repeat your calculation for S = 3

2 .

Solution :

The partition function is given by

Z = g0 e
−βE0 + g1E

−βE1 + . . . ,

where gj and Ej are the degeneracy and energy of the jth energy level, respectively. From this, we have

F = −k
B
T lnZ = E0 − k

B
T ln

(
g0 + g1 e

−∆1/kBT + . . .
)

,

where ∆j ≡ Ej − E0 is the excitation energy for energy level j > 1. Suppose that the spacings between
consecutive energy levels are much larger than the temperature, i.e. Ej+1 − Ej ≫ k

B
T . This is the case

for any harmonic oscillator system so long as ~ω ≫ k
B
T , where ω is the oscillator frequency. We then

have

F = E0 − k
B
T ln g0 −

g1
g0
k
B
T e−∆1/kBT + . . .

The entropy is

S = −∂F
∂T

= ln g0 +
g1
g0
e−∆1/kBT +

g1
g0

∆1

T
e−∆1/kBT + . . .

and thus the heat capacity is

C(T ) = T
∂S

∂T
=
g1
g0

∆2
1

k
B
T 2

e−∆1/kBT + . . .

With g0 = g1 = 1, this recovers what we found in §4.10.6 of the Lecture Notes for the low temperature
behavior of the Schottky two level system.

OK, so now let us consider the problem at hand, which is the one-dimensional harmonic oscillator,
whose energy levels lie at Ej = (j + 1

2)~ω, hence ∆j = j~ω is the jth excitation energy. For S = 1
2 ,

each level is twofold degenerate. When N is even, the ground state is unique, and we occupy states
| j , ↑ 〉 and | j , ↓ 〉 for j ∈

{
0 , . . . , N

2 −1
}

. Thus, the ground state is nondegenerate and g0 = 1. The
lowest energy excited states are then made, at fixed total particle number N , by promoting either of the
| j = N

2 −1 , σ 〉 levels (σ =↑ or ↓) to j = N
2 . There are g1 = 2 ways to do this, each of which increases the

energy by ∆1 = ~ω. When N is odd, we fill one of the spin species up to level j = N−1
2 and the other up

to level j = N+1
2 . In this case g0 = 2. What about the excited states? It turns out that g1 = 4, as can be

seen from the diagrams in Fig. 35. For N odd, in either of the two ground states, the highest occupied
oscillator level is j = N+1

2 , which is only half-occupied with one of the two spin species. To make an
excited state, one can either (i) promote the occupied state to the next oscillator level j = N+3

2 , or (ii) fill
the unoccupied state by promoting the occupied state from the j = N−1

2 level. So g1 = 2 · 2 = 4. Thus,
for either possibility regarding the parity of N , we have g1/g0 = 2, which means

C(T ) =
2(~ω)2

k
B
T 2

e−~ω/k
B
T + . . .
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This result is valid for N > 1.

An exception occurs when N = 1, where the lone particle is in the n = 0 oscillator level. Since there
is no n = −1 level, the excited state degeneracy is then g1 = 2, and the heat capacity is half the above
value. Of course, for N = 0 we have C = 0.

What happens for general spin S? Now each oscillator level has a K ≡ 2S+1 spin degeneracy. We may
write N = rK + s, where r and s are integers and s ∈ {0 , 1 , . . . , K−1}. The ground states are formed
by fully occupying all | j , m 〉 states, with m ∈ {1, . . . ,K}, from j = 0 to j = r−1. The remaining s
particles must all be placed in theK degenerate levels at j = r, and there are

(K
s

)
ways of achieving this.

Thus, g0 =
(K
s

)
.

Now consider the excited states. We first assume r > 0. There are then two ways to make an excited
state. If s > 0, we can promote one of the s occupied states with j = r to the next oscillator level j = r+1.
One then has s−1 of the K states with j = r occupied, and one of the K states with j = r+1 occupied.
The degeneracy for this configuration is g =

(K
1

)( K
s−1

)
= K

( K
s−1

)
. Another possibility is to promote one

of the filled j = r−1 levels to the j = r level, resulting in K − 1 occupied states with j = r−1 and
s+1 occupied states with j = r. This is possible for any allowed value of s. The degeneracy of this
configuration is g =

(
K

K−1

)(
K
s+1

)
= K

(
K
s+1

)
. Thus,

g1 = K

(
K

s+ 1

)
+K

(
K

s− 1

)
,

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.
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.
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.
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.
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.

..
.
N even :

N odd :

g0=1 g1=2

g0=2 g1=4

Figure 23: Ground states and first excited states for the S = 1
2 one-dimensional simple harmonic oscil-

lator.
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...
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ground
state

excited
state

excited
state

Figure 24: Ground states and first excited states for the general S case, with K = 2S+1.

and thus for r > 0 and s > 0 we have

C(T ) =
g1
g0
k
B

(
~ω

k
B
T

)2
e−~ω/k

B
T + . . .

= K ·
{
K − s

s+ 1
+

s

K − s+ 1

}
· k

B

(
~ω

k
B
T

)2
e−~ω/k

B
T + . . .

The situation is depicted in Fig. 36. Upon reflection, it becomes clear that this expression is also valid
for s = 0, since the second term in the curly brackets in the above equation, which should be absent,
yields zero anyway.

The exceptional cases occur when r = 0, in which case there is no j = r−1 level to depopulate. In this
case, g1 = K

(
K
s−1

)
and g1/g0 = Ks/(K − s + 1). Note that all our results are consistent with the K = 2

case studied earlier.
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(5.15) A noninteracting Bose gas in d = 3 dimensions has dispersion ε(k) = ~c|k|.

(a) Find Tc(n).

(b) For T < Tc, find n(T, n0) and p(T ).

(c) For T > Tc, find n(T, z) and p(T, z).

(d) Find and plot the molar heat capacity at constant volume as a function of T/Tc. Comment on its
noteworthy features.

Solution :

(a) The density of states is obtained from g(ε) dε = d3k
(2π)3

, which yields

g(ε) =
ε2

2π2(~c)3
.

The critical temperature is then determined by

n =

∞∫

0

dε
g(ε)

eε/kBTc − 1
=
ζ(3)

π2

(
k
B
Tc

~c

)3
,

hence

Tc(n) =
~c

k
B

(
π2n

ζ(3)

)1/3
.

One has ζ(3) ≈ 1.2020569.

(b) For T < Tc, we have

n(T, n0) = n0 +
ζ(3)

π2

(
k
B
T

~c

)3

p(T ) =
ζ(4)

π2
(k

B
T )4

(~c)3
.

One has ζ(4) = π4

90 ≈ 1.0823232.

(c) For T > Tc, we have

n(T, z) =
1

π2

(
k
B
T

~c

)3
Li3(z)

p(T, z) =
1

π2
(k

B
T )4

(~c)3
Li4(z) .
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(d) The energy is given by E − µN = − ∂
∂β ln Ξ. With ln Ξ = −βΩ = βpV , the energy for T > Tc is

E(T, V, z) = µN − V
∂

∂β

(
βp
)

=
3V

π3
(k

B
T )4

(~c)3
Li4(z) .

The particle number for T > Tc is

N(T, V, z) =
V

π2

(
k
B
T

~c

)3
Li3(z) .

When T < Tc, we have

E(T, V ) =
3 ζ(4)V

π3
(k

B
T )4

(~c)3
, N(T, V, n0) = V n0 +

ζ(3)V

π2

(
k
B
T

~c

)3
.

We may now compute cV,N , the molar heat capacity at constant volume. For T < Tc,

cV,N (T, z) =
NA

N

(
∂E

∂T

)

V,N

=
12 ζ(4)

ζ(3)

(
T

Tc(n)

)3
R .

For T > Tc, we write

dN
∣∣
V
=

3V

π2

(
k
B
T

~c

)3
Li3(z)

dT

T
+
V

π2

(
k
B
T

~c

)3
Li2(z)

dz

z
,

so setting dN |V = 0 requires a relation between dz and dT , viz.

dz

z
= −dT

T
· 3Li3(z)
Li2(z)

.

We next differentiate the energy E, obtaining

dE
∣∣
V
=

12 k
B

π2
V

(
k
B
T

~c

)3
Li4(z) dT +

3

π2
(k

B
T )4

(~c)3
Li2(z)

dz

z

=
3 k

B

π2
V

(
k
B
T

~c

)3{
4Li4(z) −

3Li23(z)

Li2(z)

}
dT .

Thus, dividing through by dT and then by N/NA,

cV,N (T, z) = 3R

[
4Li4(z)

Li3(z)
− 3Li3(z)

Li2(z)

]
,

along with

n(T, z) =
1

π2

(
k
B
T

~c

)3
Li3(z) ⇒ Li3(z) = ζ(3)

(
Tc(n)

T

)3
.
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Note that z → 0 as T → ∞, in which case cV,N → 3R, which is the appropriate Dulong-Petit result for
the case of a linear dispersion in d = 3 dimensions.

One remarkable aspect to our result is that

lim
T→T−

c (n)
cV,N (T ) =

12 ζ(4)

ζ(3)
R ≈ 10.80471R

lim
T→T+

c (n)
cV,N (T ) =

[
12 ζ(4)

ζ(3)
− 9 ζ(3)

ζ(2)

]
R ≈ 4.227845R ,

which says that cV,N (T ) exhibits a discontinuous drop at the critical temperature Tc(n).
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(5.16) Consider free fermions with density of states g(ε) = Aεα and number density n.

(a) Find the Fermi energy ε
F
(n).

(b) Find the chemical potential shift at finite temperature up to terms of order T 4.

(c) Find the heat capacity at constant volume CV,N to first order in T .

Solution :

(a) We have

n =

ε
F∫

0

dε g(ε) =
Aεα+1

F

α+ 1
⇒ ε

F
=

(
(α+ 1)n

A

) 1
α+1

.

(b) Invoking the Sommerfeld expansion,

n =

ε
F∫

0

dε g(ε) + π2

6 g
′(ε

F
) (k

B
T )2 + 7π4

360 g
′′′(ε

F
) (k

B
T )4 + . . .

We now write µ = ε
F
+ δµ and solve for δµ(ε

F
, T ), using n =

ε
F∫
0

dε g(ε). We write the double power series

expansion of the above result, up to orders (k
B
T )4 and (k

B
T )2 δµ:

0 = g(ε
F
) δµ + 1

2g
′(ε

F
) (δµ)2 + π2

6 g
′(ε

F
) (k

B
T )2 + π2

6 g
′′(ε

F
) (k

B
T )2 δµ + 7π4

360 g
′′′(ε

F
) (k

B
T )4 + . . .

We now solve for the coefficients of the order (k
B
T )2 and (k

B
T )4 terms in δµ(T ), yielding

δµ(T ) = −π
2

6

g′(ε
F
)

g(ε
F
)
(k

B
T )2 − π4

360

{
7 g′′′(ε

F
)

g(ε
F
)

− 10 g′(ε
F
) g′′(ε

F
)

g2(ε
F
)

+
5 g′3(ε

F
)

g3(ε
F
)

}
(k

B
T )4 + . . .

Substituting g(ε) = Aεα into the above expression, we find

δµ(T ) = −απ
2

6

(k
B
T )2

εF
− α(α− 2)(2α − 7)π4

360

(k
B
T )4

ε3
F

+ . . .

(c) The heat capacity is

CV,N = π2

3 V g(εF) k
2
B
T = π2

3 VAε
α
F
k2
B
T ,

where ε
F
(n) is given in the solution to part (a).
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(5.17) In an n-type semiconductor, the donor levels lie a distance ∆ below the bottom of the conduction
band. Suppose there are M such donor levels. Due to the fact that such donor levels are spatially
localized, one can ignore the possibility of double occupancy. Thus, each donor level can be occupied
by at most one electron, but of either spin polarization. Assume the conduction band dispersion is

isotropic, given by εk = ~2k2/2m∗. You may set the conduction band minimum to εc(0) ≡ 0.

(a) Assuming that the conduction band is very sparsely populated, find an expression for the conduc-
tion electron density nc(T, µ).

(b) Suppose there are Nd electrons sitting on the donor sites, i.e. Nd of the M donor levels are singly
occupied. Find the entropy of these electrons.

(c) Find the chemical potential of the donor electrons.

(d) Use the fact that the donor electrons and the conduction band electrons are in thermal equilibrium
to eliminate µ from the problem, and find the conduction electron density nc(T ) and the fraction
νd(T ) of occupied donor sites. Assume that the donor concentration is ρd, and that all conduction
electrons are due to singly ionized donors.

Solution :

(a) We have

nc = 2

∫
d3k

(2π)d
1

eβ(εk−µc) + 1
≈ 2λ−3

c eµc/kBT ,

where µc is the chemical potential and λc = (2π~2/m∗k
B
T )1/2 thermal de Broglie wavelength for the

conduction electrons.

(b) We assume that each donor site can either be empty, or else occupied by an electron in one of two
possible polarization states. We forbid double occupancy of the donors, due to the large Coulomb energy
associated with such a state. The number of configurations for Nd occupied donor sites is then

Ω(Nd,M) = 2Nd

(
M

Nd

)
,

and therefore

Sd = k
B
ln

(
2Nd M !

Nd! (M −Nd)!

)
.

The free energy of the donor system is then

F (T,Nd,M) = −Nd∆− k
B
T ln

(
2Nd M !

Nd! (M −Nd)!

)

≈ −Nd∆−Nd kB
T ln 2 +Mk

B
T

{
Nd

M
ln

(
Nd

M

)
+

(
M −Nd

M

)
ln

(
M −Nd

M

)}
,
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where we have invoked Stirling’s approximation. The chemical potential for the donor level electrons,
which we will need later, is then

µd =

(
∂F

∂Nd

)

T,M

= −∆− k
B
T ln 2 + k

B
T ln

(
fd

1− fd

)
,

where fd = Nd/M is the fraction of donor sites which are occupied.

(c) Invoking our results from part (a) and (b), and setting µc = µd ≡ µ, we have

eµ/kBT = 1
2 ncλ

3
c =

1
2 e

−∆/k
B
T fd
1− fd

,

Thus, (
f−1
d − 1

)
nc = λ−3

c e−∆/k
B
T .

Now suppose the donor site density is ρd. All the conduction electrons must come from ionized donor
sites. The fraction of such sites is 1− fd , hence nc = (1− fd) ρd. Therefore, we have

(1− fd)
2

fd
=
e−∆/k

B
T

ρdλ
3
c

≡ b(T ) .

This yields a quadratic equation for 1− fd , whose solution is

1− fd = −1
2b+

√
1
4b

2 + b ⇒ nc =

{
− 1

2b+
√

1
4b

2 + b

}
ρd .

Note that fd → 1 as b → 0. In this limit, which is achieved when k
B
T ≪ ∆, or when ρdλ

3
c ≫ 1, or by

some combination of these two conditions, all the donor sites are occupied, and the conduction electron
density is zero. It is energetically/entropically two costly for the donors to donate an electron to the
conduction band. In the T → 0 limit, we have 1− fd ≃

√
b , hence the chemical potential becomes

µ(T → 0) = −1
2∆+ k

B
T ln

[
1
2ρd

(
2π~2

m∗k
B
T

)3/2]
,

which ultimately ends up exactly halfway between the donor levels and the bottom of the conduction
band.

This problem is very similar to the adsorption model considered in §4.9.3 of the Lecture Notes. There,
we considered a surface of adsorption sites in equilibrium with a classical gas. The only difference here
is that the adsorbate particles can exist in one of two energetically degenerate polarization states. One
can also solve for the donor density in the grand canonical ensemble. The donors are independent,
hence the partition function for the donor electrons is

Ξd =
(
1 + 2 eµ/kBT e∆/k

B
T
)M

.

Note the factor of two, due to the degeneracy of the spin polarization states. If we were to include the
possibility of doubly occupied donors, we would have instead

Ξd =
(
1 + 2 eµ/kBT e∆/k

B
T + e2µ/kBT e(2∆−U)/k

B
T
)M

,
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where the energy of the doubly occupied level is −2∆+U , with U being the Coulomb repulsion energy
for two electrons to sit on the same localized donor site. Again, we have assumed U is much larger than
every other energy scale in this problem, meaning we can ignore the possibility of double occupancy.
The grand potential for the donor electrons is then Ωd = −k

B
T ln Ξd , and so

fd = − 1

M

(
∂Ωd

∂µ

)

T,M

=
1

1
2e

−(µ+∆)/k
B
T + 1

,

which recovers the result previously obtained in part (a).
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0.6 Interacting Classical Systems

(6.1) Consider a model in which there are three possible states per site, which we can denote by A, B,
and V. The states A and B are for our purposes identical. The energies of A-A, A-B, and B-B links are all
identical and equal to W . The state V represents a vacancy, and any link containing a vacancy, meaning
A-V, B-V, or V-V, has energy 0.

(a) Suppose we write σ = +1 for A, σ = −1 for B, and σ = 0 for V. How would you write a
Hamiltonian for this system? Your result should be of the form

Ĥ =
∑

〈ij〉
E(σi , σj) .

Find a simple and explicit function E(σ, σ′) which yields the correct energy for each possible bond
configuration.

(b) Consider a triangle of three sites. Find the average total energy at temperature T . There are 33 = 27
states for the triangle. You can just enumerate them all and find the energies.

(c) For a one-dimensional ring of N sites, find the 3 × 3 transfer matrix R. Find the free energy per
site F (T,N)/N and the ground state entropy per site S(T,N)/N in the N → ∞ limit for the cases
W < 0 and W > 0. Interpret your results. The eigenvalue equation for R factorizes, so you only
have to solve a quadratic equation.

Solution :

(a) The quantity σ2i is 1 if site i is in state A or B and is 0 in state V. Therefore we have

Ĥ =W
∑

〈ij〉
σ2i σ

2
j .

(b) Of the 27 states, eight have zero vacancies – each site has two possible states A and B – with energy
E = 3W . There are 12 states with one vacancy, since there are three possible locations for the vacancy
and then four possibilities for the remaining two sites (each can be either A or B). Each of these 12 single
vacancy states has energyE =W . There are 6 states with two vacancies and 1 state with three vacancies,
all of which have energy E = 0. The partition function is therefore

Z = 8 e−3βW + 12 e−βW + 7 .

Note that Z(β = 0) = Tr 1 = 27 is the total number of ‘microstates’. The average energy is then

E = − 1

Z

∂Z

∂β
=

(
24 e−3βW + 12 e−βW

8 e−3βW + 12 e−βW + 7

)
W
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(c) The transfer matrix is

Rσσ′ = e−βWσ2σ′2

=



e−βW e−βW 1
e−βW e−βW 1
1 1 1


 ,

where the row and column indices are A (1), B (2), and V (3), respectively. The partition function on a
ring of N sites is

Z = λN1 + λN2 + λN3 ,

where λ1,2,3 are the three eigenvalues of R. Generally the eigenvalue equation for a 3×3 matrix is cubic,
but we can see immediately that detR = 0 because the first two rows are identical. Thus, λ = 0 is a
solution to the characteristic equation P (λ) = det

(
λI − R

)
= 0, and the cubic polynomial P (λ) factors

into the product of λ and a quadratic. The latter is easily solved. One finds

P (λ) = λ3 − (2x+ 1)λ2 + (2x− 2)λ ,

where x = e−βW . The roots are λ = 0 and

λ± = x+ 1
2 ±

√
x2 − x+ 9

4 .

The largest of the three eigenvalues is λ+, hence, in the thermodynamic limit,

F = −k
B
T lnZ = −Nk

B
T ln

(
e−W/k

B
T + 1

2 +
√
e−2W/k

B
T − e−W/k

B
T + 9

4

)
.

The entropy is S = −∂F
∂T . In the limit T → 0 with W < 0, we have

λ+(T → 0 , W < 0) = 2 e|W |/k
B
T + e−|W |/k

B
T +O(e−2|W |/k

B
T
)

.

Thus

F (T → 0 , W < 0) = −N |W | −Nk
B
T ln 2 + . . .

S(T → 0 , W < 0) = N ln 2 .

When W > 0, we have

λ+(T → 0 , W > 0) = 2 + 2
3 e

−W/k
B
T +O(e−2W/k

B
T
)

.

Then

F (T → 0 , W > 0) = −Nk
B
T ln 2− 1

3NkB
T e−W/k

B
T + . . .

S(T → 0 , W > 0) = N ln 2 .

Thus, the ground state entropies are the same, even though the allowed microstates are very different.
For W < 0, there are no vacancies. For W > 0, every link must contain at least one vacancy.
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(6.2) The Blume-Capel model is a spin-1 version of the Ising model, with Hamiltonian

H = −J
∑

〈ij〉
Si Sj −∆

∑

i

S2
i ,

where Si ∈ {−1 , 0 , +1} and where the first sum is over all links of a lattice and the second sum is over
all sites. It has been used to describe magnetic solids containing vacancies (S = 0 for a vacancy) as well
as phase separation in 4He− 3He mixtures (S = 0 for a 4He atom). For parts (b), (c), and (d) you should
work in the thermodynamic limit. The eigenvalues and eigenvectors are such that it would shorten your
effort considerably to use a program like Mathematica to obtain them.

(a) Find the transfer matrix for the d = 1 Blume-Capel model.

(b) Find the free energy F (T,∆, N).

(c) Find the density of S = 0 sites as a function of T and ∆.

(d) Exciting! Find the correlation function 〈Sj Sj+n 〉 .

Solution :

(a) The transfer matrix R can be written in a number of ways, but it is aesthetically pleasing to choose it
to be symmetric. In this case we have

RSS′ = eβJSS
′

eβ∆(S2+S′2)/2 =



eβ(∆+J) eβ∆/2 eβ(∆−J)

eβ∆/2 1 eβ∆/2

eβ(∆−J) eβ∆/2 eβ(∆+J)


 .

(b) For an N -site ring, we have

Z = Tr e−βH = Tr
(
RN ) = λN+ + λN0 + λN− ,

where λ+, λ0, and λ− are the eigenvalues of the transfer matrix R. To find the eigenvalues, note that

~ψ0 =
1√
2




1
0
−1




is an eigenvector with eigenvalue λ0 = 2 eβ∆ sinh(βJ). The remaining eigenvectors must be orthogonal
to ψ0, and hence are of the form

~ψ± =
1√

2 + x2±




1
x±
1


 .

We now demand

R



1
x
1


 =



2 eβ∆ cosh(βJ) + x eβ∆/2

2 eβ∆/2 + x

2 eβ∆ cosh(βJ) + x eβ∆/2


 =



λ
λx
λ


 ,
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resulting in the coupled equations

λ = 2 eβ∆ cosh(βJ) + x eβ∆/2

λx = 2eβ∆/2 + x .

Eliminating x, one obtains a quadratic equation for λ. The solutions are

λ± =
(
eβ∆ cosh(βJ) + 1

2

)
±
√(

eβ∆ cosh(βJ) + 1
2

)2
+ 2 eβ∆

x± = e−β∆/2

{(
1
2 − eβ∆ cosh(βJ)

)
±
√(

1
2 − eβ∆ cosh(βJ)

)2
+ 2 eβ∆

}
.

Note λ+ > λ0 > 0 > λ− and that λ+ is the eigenvalue of the largest magnitude. This is in fact guaranteed
by the Perron-Frobenius theorem, which states that for any positive matrix R (i.e. a matrix whose elements
are all positive) there exists a positive real number p such that p is an eigenvalue of R and any other
(possibly complex) eigenvalue of R is smaller than p in absolute value. Furthermore the associated

eigenvector ~ψ is such that all its components are of the same sign. In the thermodynamic limit N → ∞
we then have

F (T,∆, N) = −Nk
B
T lnλ+ .

(c) Note that, at any site,

〈S2〉 = − 1

N

∂F

∂∆
=

1

β

∂ lnλ+
∂∆

,

and furthermore that
δS,0 = 1− S2 .

Thus,

ν0 ≡
N0

N
= 1− 1

β

∂ lnλ+
∂∆

.

After some algebra, find

ν0 = 1− r − 1
2√

r2 + 2 eβ∆
,

where
r = eβ∆ cosh(βJ) + 1

2 .

It is now easy to explore the limiting cases ∆ → −∞, where we find ν0 = 1, and ∆ → +∞, where we
find ν0 = 0. Both these limits make physical sense.

(d) We have

C(n) = 〈Sj Sj+n 〉 =
Tr
(
ΣRnΣRN−n

)

Tr
(
RN
) ,

where ΣSS′ = S δSS′ . We work in the thermodynamic limit. Note that 〈+ |Σ |+ 〉 = 0, therefore we must
write

R = λ+ |+ 〉〈+ |+ λ0 | 0 〉〈 0 | + λ− | − 〉〈− | ,
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and we are forced to choose the middle term for the n instances of R between the two Σ matrices. Thus,

C(n) =

(
λ0
λ+

)n ∣∣〈+ |Σ | 0 〉
∣∣2 .

We define the correlation length ξ by

ξ =
1

ln
(
λ+/λ0

) ,

in which case
C(n) = Ae−|n|/ξ ,

where now we generalize to positive and negative values of n, and where

A =
∣∣〈+ |Σ | 0 〉

∣∣2 = 1

1 + 1
2x

2
+

.
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(6.3) DC Comics superhero Clusterman and his naughty dog Henry are shown in Fig. 25. Clusterman,
as his name connotes, is a connected diagram, but the diagram for Henry contains some disconnected
pieces.

(a) Interpreting the diagrams as arising from the Mayer cluster expansion, compute the symmetry
factor sγ for Clusterman.

(b) What is the total symmetry factor for Henry and his disconnected pieces? What would the answer
be if, unfortunately, another disconnected piece of the same composition were to be found?

(c) What is the lowest order virial coefficient to which Clusterman contributes?

Figure 25: Mayer expansion diagrams for Clusterman and his dog.

Solution :

First of all, this is really disgusting and you should all be ashamed that you had anything to do with this
problem.

(a) Clusterman’s head gives a factor of 6 because the upper three vertices can be permuted among
themselves in any of 3! = 6 ways. Each of his hands gives a factor of 2 because each hand can be rotated
by π about its corresponding arm. The arms themselves can be interchanged, by rotating his shoulders
by π about his body axis (Clusterman finds this invigorating). Finally, the analysis for the hands and
arms applies just as well to the feet and legs, so we conclude

sγ = 6 ·
(
22 · 2

)2
= 3 · 27 = 384 .

Note that an arm cannot be exchanged with a leg, because the two lower vertices on Clusterman’s torso
are not equivalent. Plus, that would be a really mean thing to do to Clusterman.

(b) Henry himself has no symmetries. The little pieces each have s△ = 3!, and moreover they can
be exchanged, yielding another factor of 2. So the total symmetry factor for Henry plus disconnected
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pieces is s△△ = 2! · (3!)2 = 72. Were another little piece of the same. . . er. . . consistency to be found, the

symmetry factor would be s△△△ = 3! · (3!)3 = 24 · 34 = 1296, since we get a factor of 3! from each of the
△ pieces, and a fourth factor of 3! from the permutations among the △s.

(c) There are 18 vertices in Clusterman, hence he will first appear in B18.
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(6.4) Use the high temperature expansion to derive the spin-spin correlation functions for a spin-12 (σn =
±1) Ising chain and Ising ring. Compare with the results in chapter 6 of the lecture notes.

Solution :

The spin-spin correlation function Ckl = 〈σk σl〉 is expressed as a ratio Ykl/Z as in eqn. 6.51 of the
Lecture Notes (LN). For the chain, the only diagram which contributes to Z is Γ = {∅}, i.e. the triv-
ial empty lattice. This is because there is no way to form closed loops on a chain. Thus Zring =

2N (cosh βJ)N−1 since the number of links is N
L
= N − 1 (see LN eqn. 6.45). For the chain, in addi-

tion to the empty lattice, there is one closed loop that can be formed which includes every link of the
chain. Thus Zchain = 2N (cosh βJ)N

(
1 + xN

)
, where x = tanh βJ . As for the numerator Ykl, on the

chain there is only one possible string, shown in Fig. 26, which extends between sites k and l. Thus
Y chain
kl = 2N (cosh βJ)N−1x|k−l|. On the ring there are two possible strings, since the ring is multiply

connected. Thus Y ring
kl = 2N (cosh βJ)N

(
x|k−l| + xN−|k−l|). Therefore,

Cchain
kl = x|k−l| , Cring

kl =
x|k−l| + xN−|k−l|

1 + xN
.

1

1 1
2 2

2 3

3 3

4

4 4

5 6 7 8 9 10 11 12

5
5

66

7 7

88

9 9

10 10

11 11

1212

Figure 26: Diagrams for the numerator of the high temperature expansion of the spin-spin correlation
function on an Ising ring and chain.
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(6.5) An ionic solution of dielectric constant ǫ and mean ionic density n fills a grounded conducting
sphere of radius R. A charge Q lies at the center of the sphere. Calculate the ionic charge density as a
function of the radial coordinate r, assuming Q/r ≪ k

B
T .

Solution :

Debye-Hückel theory tells us that

n±(r) =
1
2n∞ e∓eφ(r)/k

B
T

and

∇2φ = −4πe

ǫ

(
n+ − n−

)
− 4π

ǫ
ρ
ext

,

where ǫ is the dielectric constant. Assuming φ≪ k
B
T , we have ∇2φ = κ2

D
φ− 4πǫ−1ρ

ext
, with

κ
D
=

√
4πn∞e2

ǫ k
B
T

.

Assuming a spherically symmetric solution, with a point charge Q at the origin, we solve

(
− 1

r

∂2

∂r2
r + κ2

D

)
φ =

4πQ

ǫ
δ(r) .

The solution is then of the form φ(r) = 1
r u(r), with u′′ = κ2

D
u for r > 0. Thus,

φ(r) = A
cosh(κ

D
r)

r
+B

sinh(κ
D
r)

r
.

As r → 0 we must have an unscreened charge Q, hence A = Q/ǫ. The boundary condition on the
conducting sphere is φ(R) = 0, hence B = −A ctnh (κ

D
R). Thus,

φ(r) =
Q cosh(κ

D
r)

ǫ r
·
(
1− tanh(κ

D
r)

tanh(κ
D
R)

)
.

We stress that this solution is valid only where e φ(r) ≪ k
B
T .
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(6.6) Consider a three-dimensional gas of point particles interacting according to the potential

u(r) =





+∆0 if r ≤ a

−∆1 if a < r ≤ b

0 if b < r ,

where ∆0,1 are both positive. Compute the second virial coefficient B2(T ) and find a relation which
determines the inversion temperature in a throttling process.

Solution :

The Mayer function is

f(r) =





e−∆0/kBT − 1 if r ≤ 0

e∆1/kBT − 1 if a < r ≤ b

0 if b < r .

The second virial coefficient is

B2(T ) = −1
2

∫
d3r f(r)

=
2πa3

3
·
[(
1− e−∆0/kBT

)
+ (s3 − 1)

(
1− e∆1/kBT

)]
,

where s = b/a. The inversion temperature is a solution of the equation B2(T ) = TB′
2(T ), which gives

s3 − 1 =
1 +

(
∆0

k
B
T − 1

)
e−∆0/kBT

1 +
(

∆1

k
B
T + 1

)
e∆1/kBT

.
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(6.7) At the surface of every metal a dipolar layer develops which lowers the potential energy for elec-
trons inside the metal. Some electrons near the surface escape to the outside, leaving a positively charged
layer behind, while overall there is charge neutrality. The situation is depicted in Fig. 27. The electron
density outside the metal is very low and Maxwell-Boltzmann statistics are appropriate.

Figure 27: Electron distribution in the vicinity
of the surface of a metal.

(a) Consider a flat metallic surface, normal to x̂, located
at x = 0. Assume for x > 0 an electronic distribution
n(x) = n0 exp(eφ/k

B
T ), where φ is the electric poten-

tial. For x > 0 there are only electrons; all the positive
charges are located within the metal. Write down the
self-consistent equation for the potential φ(x).

(b) Having found the self-consistent equation for φ(x),
show that, multiplying by φ′(x), the equation can be in-
tegrated once, analogous to the conservation of energy
for mechanical systems (with φ playing the role of the
coordinate and x playing the role of time). Show that
the equation can be integrated once again to yield φ(x),
with the constant determined by the requirement that
n(x = 0) = n0.

(c) Find n(x).

Solution :

(a) The self-consistent equation is Poisson’s equation,

∇2φ = −4πρ = 4πen0 e
eφ/k

B
T .

Since the only variation is along x, we have φ′′ = 4πen0 e
eφ/k

B
T . Multiplying each side by dφ

dx , we have

d

dx

(
1
2φ

′2) = d

dx

(
4πn0 kB

T eeφ/kBT
)

,

and integrating this equation from x to ∞ we obtain

dφ

dx
= −(8πn0 kB

T )1/2 eeφ/2kBT .

Note also the choice of sign here, due to the fact that the potential −eφ for electrons must increase with
x. The boundary term at x = ∞ must vanish since n(∞) = 0, which requires eeφ(∞)/k

B
T = 0.

(b) Integrating once more, we have

e−eφ(x)/2k
B
T =

(
2πn0 e

2

k
B
T

)1/2
(x+ a) ,

where a is a constant of integration. Since n(x = 0) ≡ n0, we must have φ(0) = 0, and hence

a =

(
k
B
T

2πn0 e
2

)1/2
.
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Thus,

φ(x) = −2k
B
T

e
ln

(
x+ a

a

)
.

(c) The electron number distribution is then

n(x) = n0

(
a

x+ a

)2
.



140 LIST OF FIGURES

(6.8) In §6.4.3 of the notes, the virial equation of state is derived for a single species of particle.

(a) Generalize eqn. 5.160 to the case of two species interacting by uσσ′(r), where σ and σ′ are the
species labels.

(b) For a plasma, show from Debye-Hückel theory that the pair correlation function is gσσ′ ∝ exp
(
−

σσ′q2φ(r)/k
B
T
)
, where σ and σ′ are the signs of the charges (magnitude q), and φ(r) is the screened

potential due to a unit positive test charge.

(c) Find the equation of state for a three-dimensional two-component plasma, in the limit where T is
large.

Solution :

(a) Let i = 1, . . . , N++N− index all the particles, and let σi = ±1 denote the sign of the charge of particle
i, with σi = +1 for 1 ≤ i ≤ N+ and σi = −1 for (N+ +1) ≤ i ≤ (N+ +N−). In a globally neutral system,
N+ = N− ≡ 1

2N . We define

gµν(r) ≡
1

nµnν

〈∑

i 6=j

δ(r − xi) δ(xj) δσi,µ
δσj ,ν

〉
,

where nµ is the density of particles of species µ, with µ = ±1. As defined, gµν(r) → 1 as r → ∞. If

instead we normalize gµν by dividing by n2tot = (n+ + n−)
2, then we would have gµν(r → ∞) = 1

4 . We
next work on the virial equation of state,

p

k
B
T

=
N+ +N−

V
− 1

3V k
B
T

N++N−∑

i=1

〈
xi ·∇iW

〉
.

The potential is

W =
∑

i<j

σi σj q
2

|xi − xj|
≡
∑

i<j

uσiσj

(
|xi − xj|

)
,

with uσσ′(r) = σσ′q2/r. Then using translational invariance one has

p

k
B
T

= n+ + n− − 2π

3k
B
T

∑

σ,σ′

nσn σ′

∞∫

0

dr r3 u′σσ′(r) gσσ′ (r)

(b) According to Debye-Hückel theory,

gσσ′ (r) = exp

(
− σσ′q φ(r)

k
B
T

)
,

where φ(r) is the screened potential at r due to a point charge q at the origin, which satisfies

∇2φ = 4πnq sinh
(
qφ/k

B
T
)
− 4πq δ(r) ,
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where n+ = n− ≡ 1
2n. In the high temperature limit, we can expand the sinh function and we obtain the

Yukawa potential

φ(r) =
q

r
e−κ

D
r ,

where

κ
D
=

(
4πnq2

k
B
T

)1/2

is the Debye screening wavevector. Thus, we have

p

k
B
T

= n− πn2

6k
B
T

∞∫

0

dr r3
(
− q2

r2

)∑

σ,σ′

σσ′ gσσ′ (r)

= n− 2πn2q3

3(k
B
T )2

∞∫

0

dr r φ(r) = n− 2πn2q4

3(k
B
T )2κ

D

= n

(
1−

√
π n1/2 q3

3 (k
B
T )3/2

)
.
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(6.9) Consider a liquid where the interaction potential is u(r) = ∆0 (a/r)
k, where ∆0 and a are energy

and length scales, respectively. Assume that the pair distribution function is given by g(r) ≈ e−u(r)/k
B
T .

Compute the equation of state. For what values of k do your expressions converge?

Solution:

According to the virial equation of state in eqn. 6.157 of the Lecture Notes,

p = nk
B
T − 2

3πn
2

∞∫

0

dr r3 g(r)u′(r) .

Substituting for u(r) and g(r) as in the statement of the problem, we change variables to

s ≡ u(r)

k
B
T

⇒ ds =
u′(r)
k
B
T
dr ,

so

r = a

(
∆0

k
B
T

)1/k
s−1/k

and

r3 g(r)u′(r) dr = k
B
T a3

(
∆0

k
B
T

)3/k
s−3/k e−s ds .

We then have

p = nk
B
T + 2

3πn
3a3k

B
T

(
∆0

k
B
T

)3/k ∞∫

0

ds s−3/k e−s

= nk
B
T

{
1 + 2

3πΓ
(
1− 3

k

)
na3
(

∆0

k
B
T

)3/k}
.

Note that a minus sign appears because we must switch the upper and lower limits on the s integral.
This expression converges provided k < 0 or k > 3.
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(6.10) Consider a charge Q impurity located at the origin of a two-dimensional metallic plane. You may
model the plane initially as a noninteracting Fermi gas in the presence of a neutralizing background.
Poisson’s equation is

∇2φ = 4πe
[
n(ρ)− n0

]
δ(z) − 4πQδ(ρ) δ(z) ,

where r = (ρ, z) is decomposed into a two-dimensional vector ρ and the scalar z, and where n0 is the
number density of electrons at |ρ| = ∞.

(a) Using the Thomas-Fermi approach, find the two-dimensional electron number density n(ρ) in
terms of the local potential φ(ρ, 0).

(b) By Fourier transformation, show that

φ̂(k, q) =
4πQ

k2 + q2
− 4πn0e

2

ε
F

χ̂(k)

k2 + q2
,

where k is a two-dimensional wavevector, and

χ̂(k) =

∞∫

−∞

dq

2π
φ̂(k, q) .

(c) Solve for χ̂(k) and then for φ̂(k, q).

(d) Derive an expression for the potential φ(ρ, z).

(e) Derive an expression for the local charge density ̺(ρ) = en0−en(ρ). Show that ̺(ρ) = Q
2πλ2 f(ρ/λ),

where λ is a screening length and f(s) is some function, and expression for which you should
derive. Sketch f(s).

Solution:

(a) In two dimensions we have

n = 2

∫
d2k

(2π)2
Θ(kF − k) =

k2
F

2π
=
mε

F

π~2
,

where we have used ε
F
= ~2k2

F
/2m. In the presence of a potential, the energy levels are shifted and it

is the electrochemical potential ε∞
F

= ε
F
− eφ which is constant throughout the system. Thus, the local

electron density is

n(ρ) =
m

π~2

[
ε∞
F

+ e φ(ρ, 0)
]
= n0 +

me

π~2
φ(ρ, 0) .

Here, φ(r) = φ(ρ, z) is the electrostatic potential in three-dimensional space. When we restrict to the
z = 0 plane we write φ(ρ, 0).

(b) We now have

∇2φ =
4

aB

φ(ρ, 0) δ(z) − 4πQδ(ρ) δ(z) ,
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where a
B
= ~2/me2 is the Bohr radius. Now we take the Fourier transform by multiplying the above

equation by eik·ρeiqz and then integrating over all ρ and z. This gives

−(k2 + q2)φ̂(k, q) =
4

a
B

χ̂(k)︷ ︸︸ ︷
∞∫

−∞

dq

2π
φ̂(k, q) −4πQ ,

hence

φ̂(k, q) =
4πQ

k2 + q2
− 4

a
B

χ̂(k)

k2 + q2
.

(c) To solve for χ̂(k) we integrate the above equation over q and use the fact that

∞∫

−∞

dq

2π

eiqz

k2 + q2
=
e−|kz|

2 |k| .

Thus,

χ̂(k) =
2πQ

|k| − 2

|ka
B
|
χ̂(k)

Thus,

χ̂(k) =
2πQ

|k|+ λ−1
,

where λ = 1
2aB

. Plugging this back into our equation for φ̂(k, q), we obtain

φ̂(k, q) =
4πQ · |kλ|(

k2 + q2
)(
1 + |kλ|

) .

(d) Now we Fourier transform back to real space:

φ(ρ, z) =

∫
d2k

(2π)2

∞∫

−∞

dq

2π
φ̂(k, q) eik·ρ eiqz

=

∫
d2k

(2π)2
e−|kz|

2 |k| · 4πQ |kλ|
1 + |kλ| · eik·ρ

=
Q

λ
F
(
ρ/λ, |z|/λ

)
,

where

F (σ, ζ) =

∞∫

0

du
u

1 + u
J0(σu) e

−ζu ,

where J0(s) is the Bessel function of order zero.
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Figure 28: Plot of the screening charge density in units of −Q/2πλ2 for problem (10).

(e) We have

̺(ρ) = e
[
n0 − n(ρ)

]
= − Q

2πλ2
F (ρ/λ, 0) .

Note

F (ρ/λ, 0) =

∞∫

0

du
uJ0(uρ/λ)

1 + u
=
λ

ρ
−

∞∫

0

du
J0(uρ/λ)

1 + u

=
λ

ρ
+ 1

2π Y0(ρ/λ)− 1
2πH0(ρ/λ) ,

where Y0(s) is a Bessel function of the second kind and H0(s) is the Struve function. Asymptotically11

we obtain

̺(ρ) =
Q

2πλ2

{
p−1∑

n=1

(−1)n Γ2
(
1
2 + n

)(2λ

ρ

)(2n+1)

+ O
(
2λ/ρ)2p+1

}
.

Note that ̺(ρ) ∝ ρ−3 at large distances. In the above formula, p is arbitrary. Since Γ(z + 1
2 ) ∼ z ln z − z,

the optimal value of p to minimize the remainder in the sum is p ≈ ρ/2λ. See Fig. 36 for a sketch.

11See Gradshteyn and Ryzhik §8.554, then use Γ(z) Γ(1− z) = π csc(πz).
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(11) The grand partition function for a system is given by the expression

Ξ = (1 + z)V/v0
(
1 + zαV/v0

)
,

where α > 0. In this problem, you are to work in the thermodynamic limit. You will also need to be
careful to distinguish the cases |z| < 1 and |z| > 1.

(a) Find an expression for the pressure p(T, z).

(b) Find an expression for the number density n(T, z).

(c) Plot v(p, T ) as a function of p for different temperatures and show there is a first order phase
transition, i.e. a discontinuity in v(p), which occurs for |z| = 1. What is the change in volume at the
transition? .

Solution :

(a) The grand potential is

Ω(T, z) = −k
B
T ln Ξ = −kB

T V

v0
ln(1 + z)− k

B
T ln

(
1 + zαV/v0

)
.

Now take the thermodynamic limit V/v0 → ∞. One then has

Ω(T, z) = −kB
T V

v0
ln(1 + z)−

{
0 if |z| < 1
αk

B
T V

v0
ln z if |z| > 1 .

From this we compute the pressure,

p = −
(
∂Ω

∂V

)

T,µ

=
k
B
T

v0
ln(1 + z) +

αk
B
T

v0
· z

αV/v0 ln z

1 + zαV/v0

=
k
B
T

v0
ln(1 + z) +

{
0 if |z| < 1
αk

B
T

v0
ln z if |z| > 1 .

(b) For the density, we have

n = − z

V k
B
T

(
∂Ω

∂z

)

T,V

=
1

v0
· z

1 + z
+
α

v0
· zαV/v0

1 + zαV/v0

=
1

v0
· z

1 + z
+

{
0 if |z| < 1

α/v0 if |z| > 1 .
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(c) We eliminate z from the above equations, and we write v = 1/n as the volume per particle. The
fugacity z(v) satisfies

z(v) =





v0
v−v0

if v > 2v0

1 if
2v0
1+2α < v < 2v0

v0−αv
(1+α)v−v0

if
v0
1+α < v <

2v0
1+2α

∞ if v <
v0
1+α

We then have

pv0
k
B
T

=





ln
(

v
v−v0

)
v > 2v0

ln 2
2v0
1+2α < v < 2v0

ln
[(

v
(1+α)v−v

0

)(
v0−αv

(1+α)v−v
0

)α] v0
1+α < v <

2v0
1+2α

∞ v <
v0

1+α

Sample plots of z(v) and p(v) are shown in Fig. 29.
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Figure 29: z(v) and p(v) for α = 0.2, 1.0, and 3.0.

(6.12) In problem 11, you considered the thermodynamic properties associated with the grand partition
function Ξ(V, z) = (1 + z)V/v0

(
1 + zαV/v0

)
. Consider now the following partition function:

Ξ(V, z) = (1 + z)V/v0
K∏

j=1

{
1 +

(
z

σj

)αV/Kv0
}

.

Consider the thermodynamic limit where α is a number on the order of unity, V/v0 → ∞, and K → ∞
but with Kv0/V → 0. For example, we might have K ∝ (V/v0)

1/2.

(a) Show that the number density is

n(T, z) =
1

v0

z

1 + z
+
α

v0

|z|∫

0

dσ g(σ) ,
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where

g(σ) =
1

K

K∑

j=1

δ(σ − σj) .

(b) Derive the corresponding expression for p(T, z).

(c) In the thermodynamic limit, the spacing between consecutive σj values becomes infinitesimal. In
this case, g(σ) approaches a continuous distribution. Consider the flat distribution,

g(σ) =
1

w
Θ(σ − r)Θ(r + w − σ) =

{
w−1 if r < σ < r +w

0 otherwise.

The model now involves three dimensionless parameters12: α, r, and w. Solve for z(v). You will
have to take cases, and you should find there are three regimes to consider13.

(d) Plot pv0/kB
T versus v/v0 for the case α = 1

4 and r = w = 1.

(e) Comment on the critical properties (i.e. the singularities) of the equation of state.

Solution :

(a) We have

1

V
ln Ξ =

1

v0
ln(1 + z) +

α

Kv0

K∑

i=1

ln(z/σi)Θ
(
|z| − σi

)
,

so from n = V −1z ∂ ln Ξ/∂z,

n =
1

v0

z

1 + z
+

α

Kv0

K∑

i=1

Θ
(
|z| − σi

)

=
1

v0

z

1 + z
+
α

v0

|z|∫

0

dσ g(σ) .

(b) The pressure is p = V −1k
B
T ln Ξ:

p =
k
B
T

v0
ln(1 + z) +

αk
B
T

Kv0

K∑

i=1

ln(z/σi)Θ
(
|z| − σi

)

=
k
B
T

v0
ln(1 + z) +

αk
B
T

v0

|z|∫

0

dσ g(σ) ln
(
z/σ

)
.

12The quantity v0 has dimensions of volume and disappears from the problem if one defines ṽ = v/v0.
13You should find that a fourth regime, v < (1 + r−1)v0, is not permitted.
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(c) We now consider the given form for g(σ). From our equation for n(z), we have

nv0 =
v0
v

=





z
1+z if |z| ≤ r
z

1+z + α
w (z − r) if r ≤ |z| ≤ r +w

z
1+z + α if r + w ≤ |z| .

We need to invert this result. We assume z ∈ R+. In the first regime, we have

z ∈ [ 0 , r ] ⇒ z =
v0

v − v0
with

v

v0
∈
[
1 + r−1 , ∞

]
.

In the third regime,

z ∈ [ r + w , ∞ ] ⇒ z =
v0 − αv

(1 + α) v − v0
with

v

v0
∈
[

1

1 + α
,

1 + r + w

(1 + α)(r + w) + α

]
.

Note that there is a minimum possible volume per particle, vmin = v0/(1+α), hence a maximum possible
density nmax = 1/vmin. This leaves us with the second regime, where z ∈ [ r , r+w ]. We must invert the
relation

v0
v

=
z

1 + z
+
α

w
(z − r) ⇒ α

w
z2 +

(
α

w
(1− r) + 1− v0

v

)
z −

(
αr

w
+
v0
v

)
= 0 .

obtaining

z =
−
[
α
w (1− r) + 1− v0

v

]
+

√[
α
w (1− r) + 1− v0

v

]2
+ 4α

w

(
αr
w +

v0
v

)

2α/w
,

which holds for

a ∈ [ r , r + w ] ⇒ v

v0
∈
[

1 + r + w

(1 + α)(r + w) + α
, 1 + r−1

]
.

The dimensionless pressure π = pv0/kB
T is given by

z ∈ [ 0 , r ] ⇒ π = ln(1 + z) with
v

v0
∈
[
1 + r−1 , ∞

]
.

and
z ∈ [ r + w , ∞ ] ⇒ π = ln(1 + z) + α ln z − α

w

[
(r + w) ln(r + w)− r ln r − w

]

in the large volume region and

v

v0
∈
[

1

1 + α
,

1 + r + w

(1 + α)(r + w) + α

]

in the small volume region. In the intermediate volume region, we have

π = ln(1 + z) +
α

w
(z − r) ln z − α

w

(
z ln z − r ln r − z + r

)
,

which holds for

z ∈ [ r , r + w ] ⇒ v

v0
∈
[

1 + r + w

(1 + α)(r + w) + α
, 1 + r−1

]
.
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(d) The results are plotted in Fig. 36. Note that v is a continuous function of π, indicating a second order
transition.

(e) Consider the thermodynamic behavior in the vicinity of z = r, i.e. near v = (1 + r−1)v0. Let’s write
z = r+ǫ and work to lowest nontrivial order in ǫ. On the low density side of this transition, i.e. for ǫ < 0,
we have, with ν = nv0 = v0/v,

ν =
z

1 + z
=

r

1 + r
+

ǫ

(1 + r)2
+O(ǫ2)

π = ln(1 + z) = ln(1 + r) +
ǫ

1 + r
+O(ǫ2) .

Eliminating ǫ, we have

ν < νc ⇒ π = ln(1 + r) + (1 + r)(ν − νc) + . . . ,

where νc = r/(1 + r) is the critical dimensionless density. Now investigate the high density side of the

Figure 30: Fugacity z and dimensionless pressure pv0/kBT versus dimensionless volume per particle
v/v0 for problem (2), with α = 1

4 and r = w = 1. Different portions of the curves are shown in different
colors. The dashed line denotes the minimum possible volume vmin = v0/(1 + α).
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transition, where ǫ > 0. Integrating over the region [ r , r + ǫ ], we find

ν =
z

1 + z
+
α

w
(z − r) =

r

1 + r
+

[
1

(1 + r)2
+
α

w

]
ǫ+O(ǫ2)

π = ln(1 + z) +
α

w

[
z + r ln(r/z)− r

]
= ln(1 + r) +

ǫ

1 + r
+O(ǫ2) .

Note that ∂π/∂z is continuous through the transition. As we are about to discover, ∂π/∂ν is discontinu-
ous. Eliminating ǫ, we have

ν > νc ⇒ π = ln(1 + r) +
1 + r

1 + (1 + r)2 (α/w)
(ν − νc) + . . . .

Thus, the isothermal compressibility κT = − 1
v

(
∂v
∂p

)
T

is discontinuous at the transition. This can be seen
clearly as a kink in Fig. 30.

Suppose the density of states g(σ) behaves as a power law in the vicinity of σ = r, with g(σ) ≃ A (σ−r)q.
Normalization of the integral of g(σ) then requires t > −1 for convergence at this lower limit. For
z = r + ǫ with ǫ > 0, one now has

ν =
r

1 + r
+

ǫ

(1 + r)2
+
αAǫq+1

q + 1
+ . . .

π = ln(1 + r) +
ǫ

1 + r
+

αAǫq+2

(q + 1)(q + 2)r
+ . . . .

If q > 0, then to order ǫ the expansion is the same for ǫ < 0, and both π and its derivative ∂π
∂ν are

continuous across the transition. (Higher order derivatives, however, may be discontinuous or diverge.)
If −1 < q < 0, then ǫq+1 dominates over ǫ in the first of these equations, and we have

ǫ =

(
(q + 1)(ν − νc)

αA

) 1

q+1

and

π = ln(1 + r) +
1

1 + r

(
q + 1

αA

) 1
q+1

(ν − νc)
1

q+1 ,

which has a nontrivial power law behavior typical of second order critical phenomena.
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0.7 Mean Field Theory of Phase Transitions

(7.1) Find vc, Tc, and pc for the equation of state,

p =
RT

v − b
− α

v3
.

Solution :

We find p′(v):
∂p

∂v
= − RT

(v − b)2
+

3α

v4
.

Setting this to zero yields the equation

f(u) ≡ u4

(u− 1)2
=

3α

RTb2
,

where u ≡ v/b is dimensionless. The function f(u) on the interval [1,∞] has a minimum at u = 2, where
fmin = f(2) = 16. This determines the critical temperature, by setting the RHS of the above equation to
fmin. Then evaluate pc = p(vc, Tc). One finds

vc = 2b , Tc =
3α

16Rb2
, pc =

α

16b3
.
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(7.2) The Dieterici equation of state is

p (v − b) = RT exp

(
− a

vRT

)
.

(a) Find the critical point (pc, vc, Tc) for this equation of state

(b) Writing p̄ = p/pc, v̄ = v/vc, and T̄ = T/Tc, rewrite the equation of state in the form p̄ = p̄
(
v̄, T̄

)
.

(c) For the brave only! Writing p̄ = 1 + π, T̄ = 1 + t, and v̄ = 1 + ǫ, find ǫliq(t) and ǫgas(t) for
0 < (−t) ≪ 1, working to lowest nontrivial order in (−t).

Solution :

(a) We have

p =
RT

v − b
e−a/vRT ,

hence (
∂p

∂v

)

T

= p ·
{

− 1

v − b
+

a

v2RT

}
.

Setting the LHS of the above equation to zero, we then have

v2

v − b
=

a

RT
⇒ f(u) ≡ u2

u− 1
=

a

bRT
,

where u = v/b is dimensionless. Setting f ′(u∗) = 0 yields u∗ = 2, hence f(u) on the interval u ∈ (1,∞)
has a unique global minimum at u = 2, where f(2) = 4. Thus,

vc = 2b , Tc =
a

4bR
, pc =

a

4b2
e−2 .

(b) In terms of the dimensionless variables p̄, v̄, and T̄ , the equation of state takes the form

p̄ =
T̄

2v̄ − 1
exp

(
2− 2

v̄T̄

)
.

When written in terms of the dimensionless deviations π, ǫ, and t, this becomes

π =

(
1 + t

1 + 2ǫ

)
exp

(
2(ǫ+ t+ ǫt)

1 + ǫ+ t+ ǫt

)
− 1 .

Expanding via Taylor’s theorem, one finds

π(ǫ, t) = 3t− 2tǫ+ 2t2 − 2
3ǫ

3 + 2ǫ2t− 4ǫt2 − 2
3t

3 + . . . .

Thus,

πǫt ≡
∂2π

∂ǫ ∂t
= −2 , πǫǫǫ ≡

∂3π

∂ǫ3
= −4 ,

and according to the results in §7.2.2 of the Lecture Notes, we have

ǫL,G = ∓
(
6πǫt
πǫǫǫ

)1/2
= ∓

(
− 3t

)1/2
.
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(7.3) Consider a ferromagnetic spin-1 triangular lattice Ising model . The Hamiltonian is

Ĥ = −J
∑

〈ij〉
Sz
i S

z
j −H

∑

i

Sz
i ,

where Sz
i ∈ {−1 , 0 , +1} on each site i, H is a uniform magnetic field, and where the first sum is over

all links of the lattice.

(a) Derive the mean field Hamiltonian Ĥ
MF

for this model.

(b) Derive the free energy per site F/N within the mean field approach.

(c) Derive the self consistent equation for the local moment m = 〈Sz
i 〉.

(d) Find the critical temperature Tc(H = 0).

(e) Assuming |H| ≪ k
B
|T − Tc| ≪ J , expand the dimensionless free energy f = F/6NJ in terms

of θ = T/Tc, h = H/k
B
Tc, and m. Minimizing with respect to m, find an expression for the

dimensionless magnetic susceptibility χ = ∂m/∂h close to the critical point.

Solution :

(a) Writing Sz
i = m+ δSz

i , where m = 〈Sz
i 〉 and expanding Ĥ to linear order in the fluctuations δSz

i , we
find

Ĥ
MF

= 1
2NzJm

2 − (H + zJm)
∑

i

Sz
i ,

where z = 6 for the triangular lattice.

(b) The free energy per site is

F/N = 1
2zJm

2 − k
B
T lnTr e(H+zJm)Sz

= 1
2zJm

2 − k
B
T ln

{
1 + 2 cosh

(
H + zJm

k
B
T

)}
.

(c) The mean field equation is ∂F/∂m = 0, which is equivalent to m = 〈Sz
i 〉. We obtain

m =
2 sinh

(
H+zJm
k
B
T

)

1 + 2 cosh
(
H+zJm
k
B
T

) .

(d) To find Tc, we set H = 0 in the mean field equation:

m =
2 sinh(βzJm)

1 + 2 cosh(βzJm)

= 2
3βzJm+O(m3) .
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The critical temperature is obtained by setting the slope on the RHS of the above equation to unity. Thus,

Tc =
2zJ

3k
B

.

So for the triangular lattice, where z = 6, one has Tc = 4J/k
B

.

(e) Scaling T and H as indicated, the mean field equation becomes

m =
2 sinh

(
(m+ h)/θ

)

1 + 2 cosh
(
(m+ h)/θ

) =
m+ h

θ/θc
+ . . . ,

where θc =
2
3 , and where we assume θ > θc. Solving for m(h), we have

m =
h

1− θc
θ

=
θc h

θ − θc
+O

(
(θ − θc)

2
)

.

Thus, χ = θc/(θ − θc), which reflects the usual mean field susceptibility exponent γ = 1.
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(7.4) Consider a ferromagnetic spin-S Ising model on a lattice of coordination number z. The Hamilto-
nian is

Ĥ = −J
∑

〈ij〉
σi σj − µ0H

∑

i

σi ,

where σ ∈ {−S,−S + 1, . . . ,+S} with 2S ∈ Z.

(a) Find the mean field Hamiltonian Ĥ
MF

.

(b) Adimensionalize by setting θ ≡ k
B
T/zJ , h ≡ µ0H/zJ , and f ≡ F/NzJ . Find the dimensionless

free energy per site f(m,h) for arbitrary S.

(c) Expand the free energy as

f(m,h) = f0 +
1
2am

2 + 1
4bm

4 − chm+O(h2, hm3,m6)

and find the coefficients f0, a, b, and c as functions of θ and S.

(d) Find the critical point (θc, hc).

(e) Find m(θc, h) to leading order in h.

Solution :

(a) Writing σi = m+ δσi, we find

Ĥ
MF

= 1
2NzJm

2 − (µ0H + zJ)
∑

i

σi .

(b) Using the result
S∑

σ=−S

eβµ0Heff
σ =

sinh
(
(S + 1

2)βµ0H
)

sinh
(
1
2βµ0H

) ,

we have
f = 1

2m
2 − θ ln sinh

(
(2S + 1)(m+ h)/2θ

)
+ θ ln sinh

(
(m+ h)/2θ

)
.

(c) Expanding the free energy, we obtain

f = f0 +
1
2am

2 + 1
4bm

4 − chm+O(h2, hm3,m6)

= −θ ln(2S + 1) +

(
3θ − S(S + 1)

6θ

)
m2 +

S(S + 1)(2S2 + 2S + 1)

360 θ3
m4 − 2

3 S(S + 1)hm+ . . . .

Thus,

f0 = −θ ln(2S + 1) , a = 1− 1
3S(S + 1)θ−1 , b =

S(S + 1)(2S2 + 2S + 1)

90 θ3
, c = 2

3 S(S + 1) .
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(d) Set a = 0 and h = 0 to find the critical point: θc =
1
3S(S + 1) and hc = 0.

(e) At θ = θc, we have f = f0 + 1
4bm

4 − chm + O(m6). Extremizing with respect to m, we obtain

m = (ch/b)1/3. Thus,

m(θc, h) =

(
60

2S2 + 2S + 1

)1/3
θ h1/3 .
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(7.5) Consider the O(2) model,

Ĥ = −1
2

∑

i,j

Jij n̂i ·n̂j −H ·
∑

i

n̂i ,

where n̂i = cosφi x̂ + sinφi ŷ. Consider the case of infinite range interactions, where Jij = J/N for all
i, j, where N is the total number of sites.

(a) Show that

exp

[
βJ

2N

∑

i,j

n̂i ·n̂j

]
=
NβJ

2π

∫
d2m e−NβJm2/2 eβJm·

∑
i n̂i .

(b) Using the definition of the modified Bessel function I0(z),

I0(z) =

2π∫

0

dφ

2π
ez cos φ ,

show that

Z = Tr e−βĤ =

∫
d2m e−NA(m,h)/θ ,

where θ = k
B
T/J and h = H/J . Find an expression for A(m,h).

(c) Find the equation which extremizes A(m,h) as a function of m.

(d) Look up the properties of I0(z) and write down the first few terms in the Taylor expansion of
A(m,h) for small m and h. Solve for θc.

Solution :

(a) We have

Ĥ

k
B
T

= − J

2Nk
B
T

(∑

i

n̂i

)2
− H

k
B
T

·
∑

i

n̂i .

Therefore

e−Ĥ/k
B
T = exp

[
1

2Nθ

(∑

i

n̂i

)2
+

h

θ
·
∑

i

n̂i

]

=
N

2πθ

∫
d2m exp

[
−Nm2

2θ
+

(
m+ h

θ

)
·
∑

i

n̂i

]
.

(b) Integrating the previous expression, we have

Z = Tr e−Ĥ/k
B
T =

∏

i

∫
dn̂i

2π
e−Ĥ[{n̂i}]/kBT

=
N

2πθ

∫
d2m e−Nm2/2θ

[
I0
(
|m+ h|/θ

)]N
.
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Thus, we identify

A(m,h) = 1
2m

2 − θ ln I0
(
|m+ h|/θ

)
− θ

N
ln(N/2πθ) .

(c) Extremizing with respect to the vector m, we have

∂A

∂m
= m− m+ h

|m+ h| ·
I1
(
|m+ h|/θ

)

I0
(
|m+ h|/θ

) = 0 ,

where I1(z) = I ′0(z). Clearly any solution requires that m and h be colinear, hence

m =
I1
(
(m+ h)/θ

)

I0
(
(m+ h)/θ

) .

(d) To find θc, we first set h = 0. We then must solve

m =
I1(m/θ)

I0(m/θ)
.

The modified Bessel function Iν(z) has the expansion

Iν(z) =
(
1
2z
)ν ∞∑

k=0

(
1
4z

2
)k

k! Γ(k + ν + 1)
.

Thus,

I0(z) = 1 + 1
4z

2 + . . .

I1(z) =
1
2z +

1
16z

3 + . . . ,

and therefore I1(z)/I0(z) =
1
2z − 1

16z
3 +O(z5), and we read off θc =

1
2 .
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(7.6) Consider the O(3) model,

Ĥ = −J
∑

〈ij〉
n̂i · n̂j −H ·

∑

i

n̂i ,

where each n̂i is a three-dimensional unit vector.

(a) Writing
n̂i = m+ δn̂i ,

with m = 〈n̂i〉 and δn̂i = n̂i −m, derive the mean field Hamiltonian.

(b) Compute the mean field free energy f(m, θ,h), where θ = k
B
T/zJ and h = H/zJ , with f =

F/NzJ . Here z is the lattice coordination number and N the total number of lattice sites, as usual.
You may assume that m ‖ h. Note that the trace over the local degree of freedom at each site i is
given by

Tr
i
→
∫
dn̂i

4π
,

where the integral is over all solid angle.

(c) Find the critical point (θc, hc).

(d) Find the behavior of the magnetic susceptibility χ = ∂m/∂h as a function of temperature θ just
above θc.

Solution :

(a) Making the mean field Ansatz, one obtains the effective field Heff = H + zJm, and the mean field
Hamiltonian

Ĥ
MF

= 1
2NzJm

2 − (H+ zJm) ·
∑

i

n̂i .

(b) We assume that m ‖ h, in which case

f(m, θ, h) = 1
2m

2 − θ ln

∫
dn̂

4π
e(m+h)ẑ·n̂/θ

= 1
2m

2 − θ ln

(
sinh

(
(m+ h)/θ

)

(m+ h)/θ

)
.

Here we have without loss of generality taken h to lie in the ẑ direction.

(c) We expand f(m, θ, h) for small m and θ, obtaining

f(m, θ, h) = 1
2m

2 − (m+ h)2

6 θ
+

(m+ h)4

180 θ3
+ . . .

= 1
2

(
1− 1

3θ

)
m2 − hm

3 θ
+

m4

180 θ4
+ . . .
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We now read off hc = 0 and θc =
1
3 .

(d) Setting ∂f/∂m = 0, we obtain

(
1− θc

θ

)
m =

θc
θ
hm+O(m3) .

We therefore have

m(h, θ > θc) =
θc h

θ − θc
+O(h3) , χ(θ > θc) =

∂m

∂h

∣∣∣∣
h=0

=
θc

θ − θc
.
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(7.7) Consider an Ising model on a square lattice with Hamiltonian

Ĥ = −J
∑

i∈A

∑

j∈B

′
Si σj ,

where the sum is over all nearest-neighbor pairs, such that i is on the A sublattice and j is on the B
sublattice (this is the meaning of the prime on the j sum), as depicted in Fig. 31. The A sublattice spins
take values Si ∈ {−1, 0,+1}, while the B sublattice spins take values σj ∈ {−1,+1}.

(a) Make the mean field assumptions 〈Si〉 = m
A

for i ∈ A and 〈σj〉 = m
B

for j ∈ B. Find the mean
field free energy F (T,N,m

A
,m

B
). Adimensionalize as usual, writing θ ≡ k

B
T/zJ (with z = 4 for

the square lattice) and f = F/zJN . Then write f(θ,m
A
,m

B
).

(b) Write down the two mean field equations (one for m
A

and one for m
B

).

(c) Expand the free energy f(θ,m
A
,m

B
) up to fourth order in the order parameters m

A
and m

B
.

(d) Show that the part of f(θ,m
A
,m

B
) which is quadratic in m

A
and m

B
may be written as a quadratic

form, i.e.

f(θ,m
A
,m

B
) = f0 +

1
2

(
m

A
m

B

)(M11 M12

M21 M22

)(
m

A

m
B

)
+O

(
m4

A
,m4

B

)
,

where the matrix M is symmetric, with componentsMaa′ which depend on θ. The critical temper-
ature θc is identified as the largest value of θ for which detM(θ) = 0. Find θc and explain why this
is the correct protocol to determine it.

Solution :

(a) Writing Si = m
A
+ δSi and σj = m

B
+ δσj and dropping the terms proportional to δSi δσj , which are

quadratic in fluctuations, one obtains the mean field Hamiltonian

Ĥ
MF

= 1
2NzJmA

m
B
− zJm

B

∑

i∈A
Si − zJm

A

∑

j∈B
σj ,

with z = 4 for the square lattice. Thus, the internal field on each A site isHint,A = zJm
B

, and the internal
field on each B site is Hint,B = zJm

A
. The mean field free energy, F

MF
= −k

B
T lnZ

MF
, is then

F
MF

= 1
2NzJmA

m
B
− 1

2NkB
T ln

[
1 + 2 cosh(zJm

B
/k

B
T )
]
− 1

2NkB
T ln

[
2 cosh(zJm

A
/k

B
T )
]

.

Adimensionalizing,

f(θ,m
A
,m

B
) = 1

2mA
m

B
− 1

2θ ln
[
1 + 2 cosh(m

B
/θ)
]
− 1

2θ ln
[
2 cosh(m

A
/θ)
]

.
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Figure 31: The square lattice and its A and B sublattices.

(b) The mean field equations are obtained from ∂f/∂m
A
= 0 and ∂f/∂m

B
= 0. Thus,

m
A
=

2 sinh(m
B
/θ)

1 + 2 cosh(m
B
/θ)

m
B
= tanh(m

A
/θ) .

(c) Using

ln
(
2 cosh x

)
= ln 2 +

x2

2
− x4

12
+O(x6) , ln

(
1 + 2 cosh x

)
= ln 3 +

x2

3
− x4

36
+O(x6) ,

we have

f(θ,m
A
,m

B
) = f0 +

1
2mA

m
B
− m2

A

4 θ
− m2

B

6 θ
+

m4
A

24 θ3
+

m4
B

72 θ3
+ . . . ,

with f0 = −1
2θ ln 6.

(d) From the answer to part (c), we read off

M(θ) =



− 1

2θ
1
2

1
2 − 1

3θ


 ,

from which we obtain detM = 1
6θ

−2 − 1
4 . Setting detM = 0 we obtain θc =

√
2
3 .
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(7.8) The spin lattice Hamiltonian for the three state (Z3) clock model is written

Ĥ = −J
∑

〈ij〉
n̂i · n̂j ,

where each local unit vector n̂i is a planar spin which can take one of three possible values:

n̂ = ê1 , n̂ = −1
2 ê1 +

√
3
2 ê2 , n̂ = −1

2 ê1 −
√
3
2 ê2 .

Note that the internal space in which each unit vector n̂i exists is distinct from the physical Euclidean
space in which the lattice points reside.

(a) Consider the clock model on a lattice of coordination number z. Make the mean field assumption
〈n̂i〉 = m ê1. Expanding the Hamiltonian to linear order in the fluctuations, derive the mean field
Hamiltonian for this model Ĥ

MF
.

(b) Rescaling θ = k
B
T/zJ and f = F/NzJ , where F is the Helmholtz free energy andN is the number

of sites, find f(m, θ).

(c) Is the transition second order or first order? Why?

(d) Find the equations which determine the critical temperature θc.

(e) Show that this model is equivalent to the three state Potts model. Is the Z4 clock model equivalent
to the four state Potts model? Why or why not?

Solution :

(a) We can solve the mean field theory on a general lattice of coordination number z. The mean field
Hamiltonian is

Ĥ
MF

= 1
2NzJm

2 − zJm ê1 ·
∑

i

n̂i .

(b) We have

f(m, θ) = 1
2m

2 − θ lnTr
n̂
exp
(
m ê1 · n̂/θ

)

= 1
2m

2 − θ ln
(
1
3e

m/θ + 2
3e

−m/2θ
)

=
1

2

(
1− 1

2 θ

)
m2 − m3

24 θ2
+

m4

64 θ3
+O(m5) .

Here we have defined Tr n̂ = 1
3

∑
n̂ as the normalized trace. The last line is somewhat tedious to obtain,

but is not necessary for this problem.

(c) Since f(m, θ) 6= f(−m, θ), the Landau expansion of the free energy (other than constants) should
include terms of all orders starting with O(m2). This means that there will in general be a cubic term,
hence we expect a first order transition.
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(d) At the critical point, the magnetization m = mc is finite. We then have to solve two equations to
determinemc and θc. The first condition is that the free energy have degenerate minima at the transition,
i.e. f(m = 0, θ = θc) = f(m = mc, θ = θc) . Thus,

1
2m

2 = θ ln
(
1
3e

m/θ + 2
3e

−m/2θ
)

.

The second is the mean field equation itself, i.e.

∂f

∂m
= 0 ⇒ m =

em/θ − e−m/2θ

em/θ + 2 e−m/2θ
.

These equations for (m, θ) = (mc, θc) are nonlinear and hence we cannot expect to solve them analyti-
cally.

If, however, the transition were very weakly first order, then mc is by assumption small, which means we
should be able to get away with the fourth order Landau expansion of the free energy. For a free energy
f(m) = 1

2am
2 − 1

3ym
3 + 1

4bm
4, setting f(m) = f ′(m) = 0 we obtain m = 3a/y and y2 = 9ab. For our

system, a = 1 − 1
2θ , y = 1

8θ2
, and b = 1

16θ3
. We then obtain θc = 5

9 . Note that the second order term
in f(m) changes sign at θ∗ = 1

2 , so θc > θ∗ is consistent with the fact that the second order transition
is preempted by the first order one. Now we may ask, just how good was our assumption that the
transition is weakly first order. To find out, we compute mc = 3a/y = 24 θc(θc − 1

2) =
20
27 which is not

particularly small compared to unity. Hence the assumption that our transition is weakly first order is
not justified.

(e) Let ε(n̂, n̂′) = −Jn̂ · n̂′ be the energy for a given link. The unit vectors n̂ and n̂′ can each point in
any of three directions, which we can label as 0◦, 120◦, and 240◦. The matrix of possible bond energies is
shown in Tab. 10.

εclockσσ′ 0◦ 120◦ 240◦

0◦ −J 1
2J

1
2J

120◦ 1
2J −J 1

2J

240◦ 1
2J

1
2J −J

Table 10: Z3 clock model energy matrix.

Now consider the q = 3 Potts model, where the local states are labeled |A 〉, |B 〉, and |C 〉. The Hamil-
tonian is

Ĥ = −J̃
∑

〈ij〉
δσi,σj

.

The interaction energy matrix for the Potts model is given in Tab. 11.

We can in each case label the three states by a local variable σ ∈ {1, 2, 3}, corresponding, respectively, to
0◦, 120◦, and 240◦ for the clock model and to A, B, and C for the Potts model. We then observe

εclockσσ′ (J) = εPotts

σσ′ (32J) +
1
2J .
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Thus, the free energies satisfy
F clock(J) = 1

4NzJ + F Potts(32J) ,

and the models are equivalent. However, the Zq clock model and q-state Potts model are not equivalent
for q > 3. Can you see why? Hint: construct the corresponding energy matrices for q = 4.

εPotts

σσ′ A B C

A −J̃ 0 0

B 0 −J̃ 0

C 0 0 −J̃

Table 11: q = 3 Potts model energy matrix.
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(7.9) Consider the U(1) Ginsburg-Landau theory with

F =

∫
ddr
[
1
2a |Ψ|2 + 1

4b |Ψ|4 + 1
2κ |∇Ψ|2

]
.

Here Ψ(r) is a complex-valued field, and both b and κ are positive. This theory is appropriate for de-
scribing the transition to superfluidity. The order parameter is 〈Ψ(r)〉. Note that the free energy is a
functional of the two independent fields Ψ(r) and Ψ∗(r), where Ψ∗ is the complex conjugate of Ψ. Alter-
natively, one can consider F a functional of the real and imaginary parts of Ψ.

(a) Show that one can rescale the field Ψ and the coordinates r so that the free energy can be written
in the form

F = ε0

∫
ddx
[
± 1

2 |ψ|2 + 1
4 |ψ|4 + 1

2 |∇ψ|2
]

,

where ψ and x are dimensionless, ε0 has dimensions of energy, and where the sign on the first
term on the RHS is sgn(a). Find ε0 and the relations between Ψ and ψ and between r and x.

(b) By extremizing the functional F [ψ,ψ∗] with respect to ψ∗, find a partial differential equation de-
scribing the behavior of the order parameter field ψ(x).

(c) Consider a two-dimensional system (d = 2) and let a < 0 (i.e. T < Tc). Consider the case where
ψ(x) describe a vortex configuration: ψ(x) = f(r) eiφ, where (r, φ) are two-dimensional polar coor-
dinates. Find the ordinary differential equation for f(r) which extremizes F .

(d) Show that the free energy, up to a constant, may be written as

F = 2πε0

R∫

0

dr r

[
1
2

(
f ′
)2

+
f2

2r2
+ 1

4

(
1− f2

)2
]

,

where R is the radius of the system, which we presume is confined to a disk. Consider a trial
solution for f(r) of the form

f(r) =
r√

r2 + a2
,

where a is the variational parameter. Compute F (a,R) in the limit R → ∞ and extremize with
respect to a to find the optimum value of a within this variational class of functions.

Solution :

(a) Taking the ratio of the second and first terms in the free energy density, we learn that Ψ has units of

A ≡
(
|a|/b

)1/2
. Taking the ratio of the third to the first terms yields a length scale ξ =

(
κ/|a|

)1/2
. We

therefore write Ψ = Aψ and x̃ = ξx to obtain the desired form of the free energy, with

ε0 = A2 ξd |a| = |a|2− 1
2
d b−1 κ

1
2
d .
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(b) We extremize with respect to the field ψ∗. Writing F = ε0
∫
d3xF , with F = ±1

2 |ψ|2+ 1
4 |ψ|4+ 1

2 |∇ψ|2,

δ(F/ε0)

δψ∗(x)
=

∂F
∂ψ∗ −∇· ∂F

∂∇ψ∗ = ±1
2 ψ + 1

2 |ψ|2 ψ − 1
2 ∇2ψ .

Thus, the desired PDE is
−∇2ψ ± ψ + |ψ|2 ψ = 0 ,

which is known as the time-independent nonlinear Schrödinger equation.

(c) In two dimensions,

∇
2 =

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
.

Plugging in ψ = f(r) eiφ into ∇2ψ + ψ − |ψ|2ψ = 0, we obtain

d2f

dr2
+

1

r

df

dr
− f

r2
+ f − f3 = 0 .

(d) Plugging ∇ψ = r̂ f ′(r) + i
r f(r)Œ̂ into our expression for F , we have

F = 1
2 |∇ψ|2 − 1

2 |ψ|2 + 1
4 |ψ|4

= 1
2

(
f ′
)2

+
f2

2r2
+ 1

4

(
1− f2

)2 − 1
4 ,

which, up to a constant, is the desired form of the free energy. It is a good exercise to show that the
Euler-Lagrange equations,

∂ (rF)

∂f
− d

dr

(
∂ (rF)

∂f ′

)
= 0

results in the same ODE we obtained for f in part (c). We now insert the trial form for f(r) into F . The
resulting integrals are elementary, and we obtain

F (a,R) = 1
4πε0

{
1− a4

(R2 + a2)2
+ 2 ln

(
R2

a2
+ 1

)
+

R2 a2

R2 + a2

}
.

Taking the limit R→ ∞, we have

F (a,R → ∞) = 2 ln

(
R2

a2

)
+ a2 .

We now extremize with respect to a, which yields a =
√
2. Note that the energy in the vortex state

is logarithmically infinite. In order to have a finite total free energy (relative to the ground state), we
need to introduce an antivortex somewhere in the system. An antivortex has a phase winding which is
opposite to that of the vortex, i.e. ψ = f e−iφ. If the vortex and antivortex separation is r, the energy is

V (r) = 1
2πε0 ln

(
r2

a2
+ 1

)
.
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This tends to V (r) = πε0 ln(d/a) for d ≫ a and smoothly approaches V (0) = 0, since when r = 0
the vortex and antivortex annihilate leaving the ground state condensate. Recall that two-dimensional
point charges also interact via a logarithmic potential, according to Maxwell’s equations. Indeed, there
is a rather extensive analogy between the physics of two-dimensional models with O(2) symmetry and
(2 + 1)-dimensional electrodynamics.
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(7.10) Consider a two-state Ising model, with an added dash of quantum flavor. You are invited to
investigate the transverse Ising model, whose Hamiltonian is written

Ĥ = −1
2

∑

i,j

Jijσ
x
i σ

x
j −H

∑

i

σzi ,

where the σαi are Pauli matrices:

σxi =

(
0 1
1 0

)

i

, σzi =

(
1 0
0 −1

)

i

.

(a) Using the trial density matrix,

̺i =
1
2 +

1
2 mx σ

x
i + 1

2 mz σ
z
i

compute the mean field free energy F/NĴ(0) ≡ f(θ, h,mx,mz), where θ = k
B
T/Ĵ(0), and h =

H/Ĵ(0). Hint: Work in an eigenbasis when computing Tr (̺ ln ̺).

(b) Derive the mean field equations for mx and mz .

(c) Show that there is always a solution with mx = 0, although it may not be the solution with the
lowest free energy. What is mz(θ, h) when mx = 0?

(d) Show that mz = h for all solutions with mx 6= 0.

(e) Show that for θ ≤ 1 there is a curve h = h∗(θ) below which mx 6= 0, and along which mx vanishes.
That is, sketch the mean field phase diagram in the (θ, h) plane. Is the mean field transition at
h = h∗(θ) first order or second order?

(f) Sketch, on the same plot, the behavior of mx(θ, h) and mz(θ, h) as functions of the field h for fixed
θ. Do this for θ = 0, θ = 1

2 , and θ = 1.

Solution :

(a) We have Tr (̺ σx) = mx and Tr (̺ σz) = mz . The eigenvalues of ̺ are 1
2(1 ±m), where m = (m2

x +

m2
z)

1/2. Thus,

f(θ, h,mx,mz) = −1
2m

2
x − hmz + θ

[
1 +m

2
ln

(
1 +m

2

)
+

1−m

2
ln

(
1−m

2

)]
.

(b) Differentiating with respect to mx and mz yields

∂f

∂mx

= 0 = −mx +
θ

2
ln

(
1 +m

1−m

)
· mx

m

∂f

∂mz

= 0 = −h+
θ

2
ln

(
1 +m

1−m

)
· mz

m
.
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Note that we have used the result
∂m

∂mµ

=
mµ

m

where mα is any component of the vector m.

(c) If we set mx = 0, the first mean field equation is satisfied. We then have mz = m sgn(h), and the
second mean field equation yields mz = tanh(h/θ). Thus, in this phase we have

mx = 0 , mz = tanh(h/θ) .

(d) When mx 6= 0, we divide the first mean field equation by mx to obtain the result

m =
θ

2
ln

(
1 +m

1−m

)
,

which is equivalent to m = tanh(m/θ). Plugging this into the second mean field equation, we find
mz = h. Thus, when mx 6= 0,

mz = h , mx =
√
m2 − h2 , m = tanh(m/θ) .

Note that the length of the magnetization vector, m, is purely a function of the temperature θ in this
phase and thus does not change as h is varied when θ is kept fixed. What does change is the canting
angle of m, which is α = tan−1(h/m) with respect to the ẑ axis.

(e) The two solutions coincide when m = h, hence

h = tanh(h/θ) =⇒ θ∗(h) =
2h

ln
(
1+h
1−h

) .

Inverting the above transcendental equation yields h∗(θ). The componentmx, which serves as the order
parameter for this system, vanishes smoothly at θ = θc(h). The transition is therefore second order.

(f) See fig. 32.
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Figure 32: Solution to the mean field equations for problem 2. Top panel: phase diagram. The region
within the thick blue line is a canted phase, where mx 6= 0 and mz = h > 0; outside this region the
moment is aligned along ẑ and mx = 0 with mz = tanh(h/θ).

(7.11) The Landau free energy of a crystalline magnet is given by the expression

f = 1
2α t

(
m2

x +m2
y

)
+ 1

4b1
(
m4

x +m4
y

)
+ 1

2b2m
2
xm

2
y ,

where the constants α and b1 are both positive, and where t is the dimensionless reduced temperature,
t = (T − Tc)/Tc.

(a) Rescale, so that f is of the form

f = ε0

{
1
2t
(
φ2x + φ2y

)
+ 1

4

(
φ4x + φ4y + 2λφ2x φ

2
y

)}
,

wheremx,y = s φx,y, where s is a scale factor. Find the appropriate scale factor and find expressions
for the energy scale ε0 and the dimensionless parameter λ in terms of α, b1, and b2.

(b) For what values of λ is the free energy unbounded from below?

(c) Find the equations which minimize f as a function of φx,y.
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(d) Show that there are three distinct phases: one in which φx = φy = 0 (phase I), another in which
one of φx,y vanishes but the other is finite (phase II) and one in which both of φx,y are finite (phase
III). Find f in each of these phases, and be clear to identify any constraints on the parameters t and
λ.

(e) Sketch the phase diagram for this theory in the (t, λ) plane, clearly identifying the unphysical
region where f is unbounded, and indicating the phase boundaries for all phase transitions. Make
sure to label the phase transitions according to whether they are first or second order.

Solution :

(a) It is a simple matter to find

mx,y =

√
α

b1
φx,y , ε0 =

α2

b1
, λ =

b2
b1

.

(b) Note that

f = 1
4 ε0

(
φ2x φ2y

)(1 λ
λ 1

)(
φ2x
φ2y

)
+ 1

2 ε0
(
φ2x φ2y

)(t
t

)
(1)

We need to make sure that the quartic term goes to positive infinity when the fields φx,y tend to infinity.
Else the free energy will not be bounded from below and the model is unphysical. Clearly the matrix in

the first term on the RHS has eigenvalues 1± λ and corresponding (unnormalized) eigenvectors
(

1
±1

)
.

Since φ2x,y cannot be negative, we only need worry about the eigenvalue 1 + λ. This is negative for
λ < −1. Thus, λ ≤ −1 is unphysical.

(c) Differentiating with respect to φx,y yields the equations

∂f

∂φx
=
(
t+ φ2x + λφ2y

)
φx = 0 ,

∂f

∂φy
=
(
t+ φ2y + λφ2x

)
φy = 0 .

(d) Clearly phase I with φx = φy = 0 is a solution to these equations. In phase II, we set one of the fields
to zero, φy = 0 and solve for φx =

√−t, which requires t < 0. A corresponding solution exists if we
exchange φx ↔ φy . In phase III, we solve

(
1 λ
λ 1

)(
φ2x
φ2y

)
= −

(
t
t

)
⇒ φ2x = φ2y = − t

1 + λ
.

This phase also exists only for t < 0, and λ > −1 as well, which is required if the free energy is to be
bounded from below. Thus, we find

(φx,I , φy,I) = (0, 0) , fI = 0

and
(φx,II , φy,II) = (±

√
−t , 0) or (0 , ±

√
−t) , fII = −1

4ε0 t
2
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Figure 33: Phase diagram for problem (2e).

and

(φx,III , φy,III) = ±
√

−t
1+λ (1 , 1) or ±

√
−t
1+λ (1 , −1) , fIII = − ε0 t

2

2 (1 + λ)
.

(e) To find the phase diagram, we note that phase I has the lowest free energy for t > 0. For t < 0 we
find

fIII − fII =
1
4 ε0 t

2 λ− 1

λ+ 1
, (2)

which is negative for |λ| < 1. Thus, the phase diagram is as depicted in fig. 33.
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(7.12) A system is described by the Hamiltonian

Ĥ = −J
∑

〈ij〉
ε(µi, µj)−H

∑

i

δµi,A , (3)

where on each site i there are four possible choices for µi: µi ∈ {A,B,C,D}. The interaction matrix
ε(µ, µ′) is given in the following table:

ε A B C D

A +1 −1 −1 0

B −1 +1 0 −1

C −1 0 +1 −1

D 0 −1 −1 +1

(a) Write a trial density matrix

̺(µ1, . . . , µN ) =
N∏

i=1

̺1(µi)

̺1(µ) = x δµ,A + y(δµ,B + δµ,C + δµ,D) .

What is the relationship between x and y? Henceforth use this relationship to eliminate y in terms
of x.

(b) What is the variational energy per site, E(x, T,H)/N?

(c) What is the variational entropy per site, S(x, T,H)/N?

(d) What is the mean field equation for x?

(e) What value x∗ does x take when the system is disordered?

(f) Write x = x∗ + 3
4ε and expand the free energy to fourth order in ε. (The factor 3

4 should generate
manageable coefficients in the Taylor series expansion.)

(g) Sketch ε as a function of T for H = 0 and find Tc. Is the transition first order or second order?

Solution :

(a) Clearly we must have y = 1
3 (1− x) in order that Tr(̺1) = x+ 3y = 1.

(b) We have
E

N
= −1

2zJ
(
x2 − 4xy + 3 y2 − 4 y2

)
−Hx ,

The first term in the bracket corresponds to AA links, which occur with probability x2 and have energy
−J . The second term arises from the four possibilities AB, AC, BA, CA, each of which occurs with
probability xy and with energy +J . The third term is from the BB, CC, and DD configurations, each
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with probability y2 and energy −J . The last term is from the BD, CD, DB, and DC configurations, each
with probability y2 and energy +J . Finally, there is the field term. Eliminating y = 1

3(1 − x) from this
expression we have

E

N
= 1

18zJ
(
1 + 10x− 20x2

)
−Hx

Note that with x = 1 we recover E = −1
2NzJ −H , i.e. an interaction energy of −J per link and a field

energy of −H per site.

(c) The variational entropy per site is

s(x) = −k
B
Tr
(
̺1 ln ̺1

)

= −k
B

(
x lnx+ 3y ln y

)

= −k
B

[
x lnx+ (1− x) ln

(
1− x

3

)]
.

(d) It is convenient to adimensionalize, writing f = F/Nε0, θ = k
B
T/ε0, and h = H/ε0, with ε0 = 5

9zJ .
Then

f(x, θ, h) = 1
10 + x− 2x2 − hx+ θ

[
x lnx+ (1− x) ln

(
1− x

3

)]
.

Differentiating with respect to x, we obtain the mean field equation

∂f

∂x
= 0 =⇒ 1− 4x− h+ θ ln

(
3x

1− x

)
= 0 .

(e) When the system is disordered, there is no distinction between the different polarizations of µ0. Thus,
x∗ = 1

4 . Note that x = 1
4 is a solution of the mean field equation from part (d) when h = 0.

(f) Find
f
(
x = 1

4 + 3
4 ε, θ, h

)
= f0 +

3
2

(
θ − 3

4

)
ε2 − θ ε3 + 7

4 θ ε
4 − 3

4 h ε

with f0 =
9
40 − 1

4h− θ ln 4.

(g) For h = 0, the cubic term in the mean field free energy leads to a first order transition which preempts
the second order one which would occur at θ∗ = 3

4 , where the coefficient of the quadratic term vanishes.
We learned in §7.6 of the Lecture Notes that for a free energy f = 1

2am
2 − 1

3ym
3 + 1

4bm
4 that the first

order transition occurs for a = 2
9 b

−1y2, where the magnetization changes discontinuously from m = 0
at a = a+c to m0 = 2

3 b
−1y at a = a−c . For our problem here, we have a = 3

(
θ − 3

4

)
, y = 3θ, and b = 7θ.

This gives
θc =

63
76 ≈ 0.829 , ε0 =

2
7 .

As θ decreases further below θc to θ = 0, ε increases to ε(θ = 0) = 1. No sketch needed!
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(7.13) Consider a q-state Potts model on the body-centered cubic (BCC) lattice. The Hamiltonian is given
by

Ĥ = −J
∑

〈ij〉
δσi , σj

,

where σi ∈ {1, . . . , q} on each site.

(a) Following the mean field treatment in §7.5.3 of the Lecture Notes, write x =
〈
δσi , 1

〉
= q−1+ s, and

expand the free energy in powers of s up through terms of order s4. Neglecting all higher order
terms in the free energy, find the critical temperature θc, where θ = k

B
T/zJ as usual. Indicate

whether the transition is first order or second order (this will depend on q).

(b) For second order transitions, the truncated Landau expansion is sufficient, since we care only
about the sign of the quadratic term in the free energy. First order transitions involve a disconti-
nuity in the order parameter, so any truncation of the free energy as a power series in the order
parameter involves an approximation. Find a way to numerically determine θc(q) based on the
full mean field (i.e. variational density matrix) free energy. Compare your results with what you
found in part (a), and sketch both sets of results for several values of q.

Solution :

(a) The expansion of the free energy f(s, θ) is given in eqn. 7.129 of the notes (set h = 0). We have

f = f0 +
1
2a s

2 − 1
3y s

3 + 1
4b s

4 +O(s5) ,

with

a =
q(qθ − 1)

q − 1
, y =

(q − 2) q3θ

2(q − 1)2
, b = 1

3q
3θ
[
1 + (q − 1)−3

]
.

For q = 2 we have y = 0, and there is a second order phase transition when a = 0, i.e. θ = q−1. For q > 2,
there is a cubic term in the Landau expansion, and this portends a first order transition. Restricting to
the quartic free energy above, a first order at a > 0 transition preempts what would have been a second
order transition at a = 0. The transition occurs for y2 = 9

2ab. Solving for θ, we obtain

θL

c =
6(q2 − 3q + 3)

(5q2 − 14q + 14) q
.

The value of the order parameter s just below the first order transition temperature is

s(θ−c ) =
√

2a/b ,

where a and b are evaluated at θ = θc

(b) The full variational free energy, neglecting constants, is

f(x, θ) = −1
2x

2 − (1− x)2

2(q − 1)
+ θ x lnx+ θ (1− x) ln

(
1− x

q − 1

)
.
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Figure 34: Variational free energy of the q = 7 Potts model versus variational parameter x. Left: free
energy f(x, θ). Right: derivative f ′(x, θ) with respect to the x. The dot-dash magenta curve in both
cases is the locus of points for which the second derivative f ′′(x, θ) with respect to x vanishes. Three
characteristic temperatures are marked θ = q−1 (blue), where the coefficient of the quadratic term in the
Landau expansion changes sign; θ = θ0 (red), where there is a saddle-node bifurcation and above which
the free energy has only one minimum at x = q−1 (symmetric phase); and θ = θc (green), where the first
order transition occurs.

Therefore

∂f

∂x
= −x+

1− x

q − 1
+ θ lnx− θ ln

(
1− x

q − 1

)

∂2f

∂x2
= − q

q − 1
+

θ

x(1− x)
.

Solving for ∂2f
∂x2 = 0, we obtain

x± =
1

2
± 1

2

√
1− θ

θ0
,

where

θ0 =
q

4(q − 1)
.
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For temperatures below θ0, the function f(x, θ) has three
extrema: two local minima and one local maximum. The
points x± lie between either minimum and the maxi-
mum. The situation is depicted in fig. 34 for the case
q = 7. To locate the first order transition, we must find
the temperature θc for which the two minima are degen-
erate. This can be done numerically, but there is an ana-
lytic solution:

θMF

c =
q − 2

2(q − 1) ln(q − 1)
, s(θ−c ) =

q − 2

q
.

A comparison of with results from part (a) is shown in
fig. 35. Note that the truncated free energy is sufficient to
obtain the mean field solution for q = 2. This is because
the transition for q = 2 is continuous (i.e. second order),
and we only need to know f(θ,m) in the vicinity of m =
0.
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(7.14) The Blume-Capel model is a S = 1 Ising model described by the Hamiltonian

Ĥ = −1
2

∑

i,j

Jij Si Sj +∆
∑

i

S2
i ,

where Jij = J(Ri − Rj) and Si ∈ {−1, 0,+1}. The mean field theory for this model is discussed
in section 7.11 of the Lecture Notes, using the ’neglect of fluctuations’ method. Consider instead a
variational density matrix approach. Take ̺(S1, . . . , SN ) =

∏
i ˜̺(Si), where

˜̺(S) =

(
n+m

2

)
δS,+1 + (1− n) δS,0 +

(
n−m

2

)
δS,−1 .

(a) Find 〈1〉, 〈Si〉, and 〈S2
i 〉.

(b) Find E = Tr (̺H).

(c) Find S = −k
B
Tr (̺ ln ̺).

(d) Adimensionalizing by writing θ = k
B
T/Ĵ(0), δ = ∆/Ĵ(0), and f = F/NĴ(0), find the dimension-

less free energy per site f(m,n, θ, δ).

(e) Write down the mean field equations.

(f) Show that m = 0 always permits a solution to the mean field equations, and find n(θ, δ) when
m = 0.

(g) To find θc, set m = 0 but use both mean field equations. You should recover eqn. 7.322 of the
Lecture Notes.

(h) Show that the equation for θc has two solutions for δ < δ∗ and no solutions for δ > δ∗. Find the
value of δ∗.14

(i) Assumem2 ≪ 1 and solve for n(m, θ, δ) using one of the mean field equations. Plug this into your
result for part (d) and obtain an expansion of f in terms of powers of m2 alone. Find the first order
line. You may find it convenient to use Mathematica here.

Solution :

(a) From the given expression for ˜̺, we have

〈1〉 = 1 , 〈S〉 = m , 〈S2〉 = n ,

where 〈A〉 = Tr(˜̺A).

(b) From the results of part (a), we have

E = Tr(˜̺Ĥ)

= −1
2NĴ(0)m

2 +N∆n ,

14Nota bene : (θ∗, δ∗) is not the tricritical point.
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assuming Jii = 0 for al i.

(c) The entropy is

S = −k
B
Tr (̺ ln ̺)

= −Nk
B

{(
n−m

2

)
ln

(
n−m

2

)
+ (1− n) ln(1− n) +

(
n+m

2

)
ln

(
n+m

2

)}
.

(d) The dimensionless free energy is given by

f(m,n, θ, δ) = −1
2m

2 + δn + θ

{(
n−m

2

)
ln

(
n−m

2

)
+ (1− n) ln(1− n) +

(
n+m

2

)
ln

(
n+m

2

)}
.

(e) The mean field equations are

0 =
∂f

∂m
= −m+ 1

2θ ln

(
n−m

n+m

)

0 =
∂f

∂n
= δ + 1

2θ ln

(
n2 −m2

4 (1− n)2

)
.

These can be rewritten as

m = n tanh(m/θ)

n2 = m2 + 4 (1 − n)2 e−2δ/θ .

(f) Setting m = 0 solves the first mean field equation always. Plugging this into the second equation, we
find

n =
2

2 + exp(δ/θ)
.

(g) If we set m→ 0 in the first equation, we obtain n = θ, hence

θc =
2

2 + exp(δ/θc)
.

(h) The above equation may be recast as

δ = θ ln

(
2

θ
− 2

)

with θ = θc. Differentiating, we obtain

∂δ

∂θ
= ln

(
2

θ
− 2

)
− 1

1− θ
=⇒ θ =

δ

δ + 1
.
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Plugging this into the result for part (g), we obtain the relation δ eδ+1 = 2, and numerical solution yields
the maximum of δ(θ) as

θ∗ = 0.3164989 . . . , δ = 0.46305551 . . . .

This is not the tricritical point.

(i) Plugging in n = m/ tanh(m/θ) into f(n,m, θ, δ), we obtain an expression for f(m, θ, δ), which we
then expand in powers of m, obtaining

f(m, θ, δ) = f0 +
1
2am

2 + 1
4bm

4 + 1
6cm

6 +O(m8) .

We find

a =
2

3θ

{
δ − θ ln

(
2(1− θ)

θ

)}

b =
1

45 θ3

{
4(1− θ) θ ln

(
2(1− θ)

θ

)
+ 15θ2 − 5θ + 4δ(θ − 1)

}

c =
1

1890 θ5(1− θ)2

{
24 (1 − θ)2 θ ln

(
2(1− θ)

θ

)
+ 24δ(1 − θ)2 + θ

(
35− 154 θ + 189 θ2

)
}

.

The tricritical point occurs for a = b = 0, which yields

θt =
1
3 , δt =

2
3 ln 2 .

If, following Landau, we consider terms only up through order m6, we predict a first order line given
by the solution to the equation

b = − 4√
3

√
ac .

The actual first order line is obtained by solving for the locus of points (θ, δ) such that f(m, θ, δ) has a
degenerate minimum, with one of the minima at m = 0 and the other at m = ±m0. The results from
Landau theory will coincide with the exact mean field solution at the tricritical point, where them0 = 0,
but in general the first order lines obtained by the exact mean field theory solution and by a truncated
sixth order Landau expansion of the free energy will differ.
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(7.15) Consider the following model Hamiltonian,

Ĥ =
∑

〈ij〉
E(σi, σj) ,

where each σi may take on one of three possible values, and

E(σ, σ′) =



−J +J 0
+J −J 0
0 0 +K


 ,

with J > 0 and K > 0. Consider a variational density matrix ̺v(σ1, . . . , σN ) =
∏

i ˜̺(σi), where the
normalized single site density matrix has diagonal elements

˜̺(σ) =

(
n+m

2

)
δσ,1 +

(
n−m

2

)
δσ,2 + (1− n) δσ,3 .

(a) What is the global symmetry group for this Hamiltonian?

(b) Evaluate E = Tr (̺v Ĥ).

(c) Evaluate S = −k
B
Tr (̺v ln ̺v).

(d) Adimensionalize by writing θ = k
B
T/zJ and c = K/J , where z is the lattice coordination number.

Find f(n,m, θ, c) = F/NzJ .

(e) Find all the mean field equations.

(f) Find an equation for the critical temperature θc, and show graphically that it has a unique solution.

Solution :

(a) The global symmetry group is Z2. If we label the spin values as σ ∈ {1, 2, 3}, then the group elements
can be written as permutations, 1 =

(123
123

)
and J =

(123
213

)
, with J 2 = 1.

(b) For each nearest neighbor pair (ij), the distribution of {σ,σj} is according to the product ˜̺(σi) ˜̺(σj).
Thus, we have

E = 1
2NzJ

∑

σ,σ′

˜̺(σ) ˜̺(σ′) ε(σ, σ′)

= 1
2NzJ ·

{
˜̺2(1)︷ ︸︸ ︷(

n+m

2

)2
(−J)+

˜̺2(2)︷ ︸︸ ︷(
n−m

2

)2
(−J)+

2 ˜̺(1) ˜̺(2)︷ ︸︸ ︷
2

(
n+m

2

)(
n−m

2

)
(+J)+

˜̺2(3)︷ ︸︸ ︷
(1− n)2 (+K)

}

= −1
2Nz

[
Jm2 −K(1− n)2

]
.
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(c) The entropy is

S = −Nk
B
Tr
(
˜̺ ln ˜̺

)

= −Nk
B

{(
n+m

2

)
ln

(
n+m

2

)
+

(
n−m

2

)
ln

(
n−m

2

)
+ (1− n) ln(1− n)

}
.

(d) This can be solved by inspection from the results of parts (b) and (c):

f = −1
2m

2 + 1
2c (1− n)2 + θ

[(
n+m

2

)
ln

(
n+m

2

)
+

(
n−m

2

)
ln

(
n−m

2

)
+ (1− n) ln(1− n)

]
.

(e) There are two mean field equations, obtained by extremizing with respect to n and tom, respectively:

∂f

∂n
= 0 = c (n− 1) + 1

2θ ln

(
n2 −m2

4 (1 − n)2

)

∂f

∂m
= 0 = −m+ 1

2θ ln

(
n−m

n+m

)
.

These may be recast as

n2 = m2 + 4 (1− n)2 e−2c(n−1)/θ

m = n tanh(m/θ) .

(f) To find θc, we take the limit m → 0. The second mean field equation then gives n = θ. Substituting
this into the first mean field equation yields

θ = 2 (1 − θ) e−2c(θ−1)/θ .

If we define u ≡ θ−1 − 1, this equation becomes

2u = e−cu .

It is clear that for c > 0 this equation has a unique solution, since the LHS is monotonically increasing
and the RHS is monotonically decreasing, and the difference changes sign for some u > 0. The low
temperature phase is the ordered phase, which spontaneously breaks the aforementioned Z2 symmetry.
In the high temperature phase, the Z2 symmetry is unbroken.



186 LIST OF FIGURES

(7.16) Consider a set of magnetic moments on a cubic lattice (z = 6). Due to the cubic anisotropy, the
system is modeled by the Hamiltonian

Ĥ = −J
∑

〈ij〉
n̂i · n̂j −H ·

∑

i

n̂i ,

where at each site n̂i can take one of six possible values: n̂i ∈ {±x̂ , ±ŷ , ±ẑ}.

(a) Find the mean field free energy f(θ,m,h), where θ = k
B
T/6J and h = H/6J .

(b) Find the self-consistent mean field equation for m, and determine the critical temperature θc(h =
0). How does m behave just below θc? Hint: you will have to go beyond O(m2) to answer this.

(c) Find the phase diagram as a function of θ and h when h = h x̂.

Solution :

(a) The effective mean field is Heff = zJm+H, where m = 〈n̂i〉. The mean field Hamiltonian is

Ĥ
MF

= 1
2NzJm

2 −Heff ·
∑

i

n̂i .

With h = H/zJ and θ = k
B
T/zJ , we then have

f(θ ,h ,m) = − k
B
T

NzJ
lnTr e−Ĥ

eff
/k

B
T

= 1
2

(
m2

x +m2
y +m2

z

)
− θ ln

[
2 cosh

(
mx + hx

θ

)
+ 2cosh

(
my + hy

θ

)
+ 2cosh

(
mz + hz

θ

)]
.

(b) The mean field equation is obtained by setting ∂f
∂mα

= 0 for each Cartesian component α ∈ {x, y, z}
of the order parameter m. Thus,

mx =
sinh

(
mx+hx

θ

)

cosh
(
mx+hx

θ

)
+ cosh

(
my+hy

θ

)
+ cosh

(
mz+hz

θ

) ,

with corresponding equations for my and mz . We now set h = 0 and expand in powers of m, using

coshu = 1 + 1
2u

2 + 1
24u

4 +O(u6) and ln(1 + u) = u− 1
2u

2 +O(u3). We have

f(θ ,h = 0 ,m) = 1
2

(
m2

x +m2
y +m2

z

)
− θ ln

(
6 +

m2
x +m2

y +m2
z

θ2
+
m4

x +m4
y +m4

z

12 θ4
+O(m6)

)

= −θ ln 6 + 1
2

(
1− 1

3θ

)(
m2

x +m2
y +m2

z

)
+
m2

xm
2
y +m2

ym
2
z +m2

zm
2
x

36 θ3
+O(m6) .

We see that the quadratic term is negative for θ < θc =
1
3 . Furthermore, the quadratic term depends only

on the magnitude of m and not its direction. How do we decide upon the direction, then? We must turn
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to the quartic term. Note that the quartic term is minimized when m lies along one of the three cubic
axes, in which case the term vanishes. So we know that in the ordered phase m prefers to lie along ±x̂,
±ŷ, or ±ẑ. How can we determine its magnitude? We must turn to the sextic term in the expansion:

f(θ , h = 0 ,m) = −θ ln 6 + 1
2

(
1− 1

3θ

)
m2 +

m6

3240 θ5
+O(m8) ,

which is valid provided m = mn̂ lies along a cubic axis. Extremizing, we obtain

m(θ) = ±
[
540 θ4 (θc − θ)

]1/4
≃
(
20
3

)1/4
(θc − θ)1/4 ,

where θc = 1
3 . So due to an accidental cancellation of the quartic term, we obtain a nonstandard mean

field order parameter exponent of β = 1
4 .

(c) When h = h x̂, the magnetization will choose to lie along the x̂ axis in order to minimize the free
energy. One then has

f(θ, h,m) = −θ ln 6 + 1
2m

2 − θ ln

[
2
3 +

1
3 cosh

(
m+ h

θ

)]

= −θ ln 6 + 3
2(θ − θc)m

2 + 3
40 m

6 − hm+ . . . ,

where in the second line we have assumed θ ≈ θc , and we have expanded for small m and h. The phase
diagram resembles that of other Ising systems. The h field breaks them → −m symmetry, and there is a
first order line extending along the θ axis (i.e. for h = 0) from θ = 0 and terminating in a critical point at
θ = θc . As we have seen, the order parameter exponent is nonstandard, with β = 1

4 . What of the other
critical exponents? Minimizing f with respect to m, we have

3(θ − θc)m+ 9
20 m

5 − h = 0 .

For θ > θc and m small, we can neglect the O(m5) term and we find m(θ, h) = h
3(θ−θc)

, corresponding to

the familiar susceptibility exponent γ = 1.

Consider next the heat capacity. For θ > θc the free energy is f = −θ ln 6 , arising from the entropy term

alone, whereas for θ < θc we have m2 =
√

20
3 (θc − θ)1/2, which yields

f(θ < θc , h = 0) = −θ ln 6−
√

20
3 (θc − θ)3/2 .

Thus, the heat capacity, which is c = −θ ∂2f
∂θ2

, behaves as c(θ) ∝ (θc − θ)−1/2, corresponding to α = 1
2 ,

rather than the familiar α = 0 .

Finally, we examine the behavior of m(θc , h). Setting θ = θc , we have

f(θc , h ,m) = −hm+ 9
40 m

6 +O(m8) .

Setting ∂f
∂m = 0, we find m ∝ h1/δ with δ = 5, which is also nonstandard.
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(7.17) A magnet consists of a collection of local moments which can each take the values Si = −1 or
Si = +3. The Hamiltonian is

Ĥ = −1
2

∑

i,j

Jij SiSj −H
∑

i

Si .

(a) Define m = 〈Si〉, h = H/Ĵ(0), θ = k
B
T/Ĵ(0). Find the dimensionless mean field free energy per

site, f = F/NĴ(0) as a function of θ, h, and m.

(b) Write down the self-consistent mean field equation for m.

(c) At θ = 0, there is a first order transition as a function of field between the m = +3 state and the
m = −1 state. Find the critical field hc(θ = 0).

(d) Find the critical point (θc , hc) and plot the phase diagram for this system.

(e) Solve the problem using the variational density matrix approach.

Solution :

(a) We invoke the usual mean field treatment of dropping terms quadratic in fluctuations, resulting in
an effective field Heff = Ĵ(0)m +H and a mean field Hamiltonian

Ĥ
MF

= 1
2NĴ(0)m

2 −Heff

N∑

i=1

Si .

The free energy is then found to be

f(θ, h,m) = 1
2m

2 − θ ln
(
e3(m+h)/θ + e−(m+h)/θ

)

= 1
2m

2 −m− h− θ ln cosh

(
2(m+ h)

θ

)
− θ ln 2 .

(b) We extremize f with respect to the order parameter m and obtain

m = 1 + 2 tanh

(
2(m+ h)

θ

)
.

(c) When T = 0 there are no fluctuations, and since the interactions are ferromagnetic we may examine
the two uniform states. In the state where Si = +3 for each i, the energy is E1 =

9
2NĴ(0)− 3NH . In the

state where Si = −1 ∀ i, the energy is E2 = 1
2NĴ(0) + NH . Equating these energies gives H = −Ĵ(0) ,

i.e. h = −1.

(d) The first order transition at h = −1 and θ = 0 continues in a curve emanating from this point into
the finite θ region of the phase diagram. This phase boundary is determined by the requirement that
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Figure 36: Phase diagram for problem 17.

f(θ, h,m) have a degenerate double minimum as a function of m for fixed θ and h. This provides us
with two conditions on the three quantities (θ, h,m) , which in principle allows the determination of
the curve h = hc(θ). The first order line terminates in a critical point where these two local minima

annihilate with a local maximum, which requires that ∂f
∂m = ∂2f

∂m2 = ∂3f
∂m3 = 0 , which provides the three

conditions necessary to determine (θc , hc , mc). Now from our expression for f(θ, h,m), we have

∂f

∂m
= m− 1− 2 tanh

(
2(m+ h)

θ

)

∂2f

∂m2
= 1− 4

θ
sech2

(
2(m+ h)

θ

)

∂3f

∂m3
=

16

θ2
tanh

(
2(m+ h)

θ

)
sech2

(
2(m+ h)

θ

)
.

Now set all three of these quantities to zero. From the third of these, we get m + h = 0, which upon
insertion into the second gives θ = 4. From the first we then get m = 1, hence h = −1.

For a slicker derivation, note that the free energy may be written

f(θ, h,m) = 1
2 (m+ h)2 − θ ln cosh

(
2(m+ h)

θ

)
− (1 + h)(m+ h) + 1

2h
2 − θ ln 2 .

Thus, when h = −1, we have that f is an even function of m− 1. Expanding then in powers of m+ h ,
we have

f(θ, h = −1,m) = f0 +
1
2

(
1− 4

θ

)
(m− 1)2 + 4

3θ3 (m− 1)4 + . . . ,

whence we conclude θc = 4 and hc = −1.

(e) The most general single site variational density matrix is

̺(S) = x δS,−1 + (1− x) δS,+3 .

This is normalized by construction. The average magnetization is

m = Tr (S̺) = (−1) · x+ (+3) · (1− x) = 3− 4x ⇒ x =
3−m

4
.
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Thus we have

̺(S) =
3−m

4
δS,−1 +

1 +m

4
δS,+3 .

The variational free energy is then

F = Tr (Ĥ ˆ̺) + k
B
T Tr (ˆ̺ ln ˆ̺)

= −1
2NĴ(0)m

2 −NHm+ k
B
T

[(
3−m

4

)
ln

(
3−m

4

)
+

(
1 +m

4

)
ln

(
1 +m

4

)]
,

where we assume all the diagonal elements vanish, i.e. Jii = 0 for all i. Dividing by NĴ(0), we have

f(θ, h,m) = −1
2m

2 − hm− θ

[(
3−m

4

)
ln

(
3−m

4

)
+

(
1 +m

4

)
ln

(
1 +m

4

)]
.

Minimizing with respect to the variational parameter m yields

∂f

∂m
= −m− h+ 1

4θ ln

(
1 +m

3−m

)
,

which is equivalent to our earlier result m = 1 + 2 tanh
[
2(m+ h)/θ

]
.

If we once again expand in powers of (m− 1), we have

f(θ, h,m) = −
(
1
2 + h+ θ ln 2

)
− (h+ 1)(m− 1) + 1

8(θ − 4)(m − 1)2 + 1
48(m− 1)4 + . . . .

Again, we see (θc, hc) = (4,−1).
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0.8 Boltzmann Equation

(8.1) Consider a monatomic ideal gas in the presence of a temperature gradient ∇T . Answer the follow-
ing questions within the framework of the relaxation time approximation to the Boltzmann equation.

(a) Compute the particle current j and show that it vanishes.

(b) Compute the ‘energy squared’ current,

jε2 =

∫
d3p ε2v f(r,p, t) .

(c) Suppose the gas is diatomic, so cp = 7
2kB

. Show explicitly that the particle current j is zero. Hint:
To do this, you will have to understand the derivation of eqn. 8.93 in the Lecture Notes and how
this changes when the gas is diatomic. You may assume Qαβ = F = 0.

Solution :

(a) Under steady state conditions, the solution to the Boltzmann equation is f = f0+ δf , where f0 is the
equilibrium distribution and

δf = − τf0

k
B
T

·
ε− cpT

T
v ·∇T .

For the monatomic ideal gas, cp =
5
2kB

. The particle current is

jα =

∫
d3p vα δf

= − τ

k
B
T 2

∫
d3p f0(p) vα vβ

(
ε− 5

2kB
T
) ∂T
∂xβ

= − 2nτ

3mk
B
T 2

∂T

∂xα
〈
ε
(
ε− 5

2kB
T
)〉

,

where the average over momentum/velocity is converted into an average over the energy distribution,

P̃ (ε) = 4πv2
dv

dε
P

M
(v) = 2√

π
(k

B
T )−3/2 ε1/2 φ(ε) e−ε/k

B
T .

As discussed in the Lecture Notes, the average of a homogeneous function of ε under this distribution
is given by 〈

εα
〉
= 2√

π
Γ
(
α+ 3

2

)
(k

B
T )α .

Thus, 〈
ε
(
ε− 5

2kB
T
)〉

= 2√
π
(k

B
T )2

{
Γ
(
7
2

)
− 5

2 Γ
(
5
2

)}
= 0 .
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(b) Now we must compute

jαε2 =

∫
d3p vα ε2 δf

= − 2nτ

3mk
B
T 2

∂T

∂xα
〈
ε3
(
ε− 5

2kB
T
)〉

.

We then have 〈
ε3
(
ε− 5

2kB
T
)〉

= 2√
π
(k

B
T )4

{
Γ
(
11
2

)
− 5

2 Γ
(
9
2

)}
= 105

2 (k
B
T )4

and so

jε2 = −35nτk
B

m
(k

B
T )2∇T .

(c) For diatomic gases in the presence of a temperature gradient, the solution to the linearized Boltzmann
equation in the relaxation time approximation is

δf = −τ f
0

k
B
T

·
ε(Γ )− cpT

T
v ·∇T ,

where

ε(Γ ) = εtr + εrot =
1
2mv2 +

L21 + L22
2I

,

where L1,2 are components of the angular momentum about the instantaneous body-fixed axes, with
I ≡ I1 = I2 ≫ I3. We assume the rotations about axes 1 and 2 are effectively classical, so equipartition
gives 〈εrot〉 = 2 × 1

2kB
= k

B
. We still have 〈εtr〉 = 3

2kB
. Now in the derivation of the factor ε(ε − cpT )

above, the first factor of ε came from the vαvβ term, so this is translational kinetic energy. Therefore,
with cp =

7
2kB

now, we must compute

〈
εtr
(
εtr + εrot − 7

2kB
T
)〉

=
〈
εtr
(
εtr − 5

2kB
T
)〉

= 0 .

So again the particle current vanishes.

Note added :

It is interesting to note that there is no particle current flowing in response to a temperature gradient
when τ is energy-independent. This is a consequence of the fact that the pressure gradient ∇p vanishes.
Newton’s Second Law for the fluid says that nmV̇ + ∇p = 0, to lowest relevant order. With ∇p 6= 0,
the fluid will accelerate. In a pipe, for example, eventually a steady state is reached where the flow is
determined by the fluid viscosity, which is one of the terms we just dropped. (This is called Poiseuille
flow.) When p is constant, the local equilibrium distribution is

f0(r,p) =
p/k

B
T

(2πmk
B
T )3/2

e−p2/2mk
B
T ,

where T = T (r). We then have

f(r,p) = f0(r− vτ,p) ,
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which says that no new collisions happen for a time τ after a given particle thermalizes. I.e. we evolve
the streaming terms for a time τ . Expanding, we have

f = f0 − τp

m
· ∂f

0

∂r
+ . . .

=

{
1− τ

2k
B
T 2

(
ε(p)− 5

2kB
T
) p

m
·∇T + . . .

}
f0(r,p) ,

which leads to j = 0, assuming the relaxation time τ is energy-independent.

When the flow takes place in a restricted geometry, a dimensionless figure of merit known as the Knudsen
number, Kn = ℓ/L, where ℓ is the mean free path and L is the characteristic linear dimension associated
with the geometry. For Kn ≪ 1, our Boltzmann transport calculations of quantities like κ, η, and ζ hold,
and we may apply the Navier-Stokes equations15. In the opposite limit Kn ≫ 1, the boundary conditions
on the distribution are crucial. Consider, for example, the case ℓ = ∞. Suppose we have ideal gas flow
in a cylinder whose symmetry axis is x̂. Particles with vx > 0 enter from the left, and particles with
vx < 0 enter from the right. Their respective velocity distributions are

Pj(v) = nj

(
m

2πk
B
Tj

)3/2
e−mv2/2k

B
Tj ,

where j = L or R. The average current is then

jx =

∫
d3v
{
n

L
vx PL

(v)Θ(vx) + n
R
vx PR

(v)Θ(−vx)
}

= n
L

√
2k

B
T

L

m
− n

R

√
2k

B
T

R

m
.

15These equations may need to be supplemented by certain conditions which apply in the vicinity of solid boundaries.
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(8.2) Consider a classical gas of charged particles in the presence of a magnetic field B. The Boltzmann
equation is then given by

ε− h

k
B
T 2

f0 v ·∇T − e

mc
v ×B · ∂ δf

dv
=

(
df

dt

)

coll

.

Consider the case where T = T (x) and B = Bẑ. Making the relaxation time approximation, show that a
solution to the above equation exists in the form δf = v·A(ε), where A(ε) is a vector-valued function of
ε(v) = 1

2mv2 which lies in the (x, y) plane. Find the energy current jε. Interpret your result physically.

Solution : We’ll use index notation and the Einstein summation convention for ease of presentation.
Recall that the curl is given by (A×B)µ = ǫµνλAν Bλ. We write δf = vµAµ(ε), and compute

∂ δf

∂vλ
= Aλ + vα

∂Aα

∂vλ

= Aλ +mvλ vα
∂Aα

∂ε
.

Thus,

v ×B · ∂ δf
∂v

= ǫµνλ vµBν

∂ δf

∂vλ

= ǫµνλ vµBν

(
Aλ +mvλ vα

∂Aα

∂ε

)

= ǫµνλ vµBν Aλ .

We then have
ε− h

k
B
T 2

f0 vµ ∂µT =
e

mc
ǫµνλ vµBν Aλ −

vµAµ

τ
.

Since this must be true for all v, we have

Aµ − eBτ

mc
ǫµνλ nν Aλ = −(ε− h) τ

k
B
T 2

f0 ∂µT ,

where B ≡ B n̂. It is conventional to define the cyclotron frequency, ωc = eB/mc, in which case
(
δµν + ωcτ ǫµνλ nλ

)
Aν = Xµ ,

where X = −(ε− h) τf0∇T/k
B
T 2. So we must invert the matrix

Mµν = δµν + ωcτ ǫµνλ nλ .

To do so, we make the Ansatz,

M−1
νσ = Aδνσ +B nν nσ + C ǫνσρ nρ ,

and we determine the constants A, B, and C by demanding

Mµν M
−1
νσ =

(
δµν + ωcτ ǫµνλ nλ

)(
Aδνσ +B nν nσ + C ǫνσρ nρ

)

=
(
A−C ωc τ

)
δµσ +

(
B + C ωc τ

)
nµ nσ +

(
C +Aωc τ

)
ǫµσρ nρ ≡ δµσ .
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Here we have used the result

ǫµνλ ǫνσρ = ǫνλµ ǫνσρ = δλσ δµρ − δλρ δµσ ,

as well as the fact that n̂ is a unit vector: nµ nµ = 1. We can now read off the results:

A− C ωcτ = 1 , B + C ωcτ = 0 , C +Aωcτ = 0 ,

which entail

A =
1

1 + ω2
cτ

2
, B =

ω2
cτ

2

1 + ω2
cτ

2
, C = − ωcτ

1 + ω2
cτ

2
.

So we can now write

Aµ =M−1
µν Xν =

δµν + ω2
cτ

2 nµ nν − ωcτ ǫµνλ nλ
1 + ω2

cτ
2

Xν .

The α-component of the energy current is

jαε =

∫
d3p

h3
vα vµ εAµ(ε) =

2

3m

∫
d3p

h3
ε2Aα(ε) ,

where we have replaced vα vµ → 2
3m ε δαµ. Next, we use

2

3m

∫
d3p

h3
ε2Xν = − 5τ

3m
k2
B
T
∂T

∂xν
,

hence

jε = − 5τ

3m

k2
B
T

1 + ω2
cτ

2

(
∇T + ω2

c τ
2 n̂ (n̂·∇T ) + ωcτ n̂×∇T

)
.

We are given that n̂ = ẑ and ∇T = T ′(x) x̂. We see that the energy current jε is flowing both along
−x̂ and along −ŷ. Why does heat flow along ŷ? It is because the particles are charged, and as they
individually flow along −x̂, there is a Lorentz force in the −ŷ direction, so the energy flows along −ŷ as
well.
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(8.3) Consider one dimensional motion according to the equation

ṗ+ γp = η(t) ,

and compute the average
〈
p4(t)

〉
. You should assume that

〈
η(s1) η(s2) η(s3) η(s4)

〉
= φ(s1 − s2)φ(s3 − s4) + φ(s1 − s3)φ(s2 − s4) + φ(s1 − s4)φ(s2 − s3)

where φ(s) = Γ δ(s). You may further assume that p(0) = 0.

Solution :

Integrating the Langevin equation, we have

p(t) =

t∫

0

dt1 e
−γ(t−t1) η(t1) .

Raising this to the fourth power and taking the average, we have

〈
p4(t)

〉
=

t∫

0

dt1 e
−γ(t−t1)

t∫

0

dt2 e
−γ(t−t2)

t∫

0

dt3 e
−γ(t−t3)

t∫

0

dt4 e
−γ(t−t4)

〈
η(t1) η(t2) η(t3) η(t4)

〉

= 3Γ 2

t∫

0

dt1 e
−2γ(t−t1)

t∫

0

dt2 e
−2γ(t−t2) =

3Γ 2

4 γ2
(
1− e−2γt

)2
.

We have here used the fact that the three contributions to the average of the product of the four η’s each
contribute the same amount to 〈p4(t)〉. Recall Γ = 2Mγk

B
T , where M is the mass of the particle. Note

that 〈
p4(t)

〉
= 3

〈
p2(t)

〉2
.
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(8.4) A photon gas in equilibrium is described by the distribution function

f0(p) =
2

ecp/kBT − 1
,

where the factor of 2 comes from summing over the two independent polarization states.

(a) Consider a photon gas (in three dimensions) slightly out of equilibrium, but in steady state under
the influence of a temperature gradient ∇T . Write f = f0 + δf and write the Boltzmann equation
in the relaxation time approximation. Remember that ε(p) = cp and v = ∂ε

∂p = cp̂, so the speed is
always c.

(b) What is the formal expression for the energy current, expressed as an integral of something times
the distribution f?

(c) Compute the thermal conductivity κ. It is OK for your expression to involve dimensionless inte-
grals.

Solution :

(a) We have

df0 = − 2cp eβcp

(eβcp − 1)2
dβ =

2cp eβcp

(eβcp − 1)2
dT

k
B
T 2

.

The steady state Boltzmann equation is v · ∂f0

∂r =
(
∂f
∂t

)
coll

, hence with v = cp̂,

2 c2 ecp/kBT

(ecp/kBT − 1)2
1

k
B
T 2

p ·∇T = −δf
τ

.

(b) The energy current is given by

jε(r) =

∫
d3p

h3
c2p f(p, r) .

(c) Integrating, we find

κ =
2c4τ

3h3k
B
T 2

∫
d3p

p2 ecp/kBT

(ecp/kBT − 1)2

=
8πk

B
τ

3c

(
k
B
T

hc

)3 ∞∫

0

ds
s4 es

(es − 1)2

=
4k

B
τ

3π2c

(
k
B
T

hc

)3 ∞∫

0

ds
s3

es − 1
,
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where we simplified the integrand somewhat using integration by parts. The integral may be computed
in closed form:

In =

∞∫

0

ds
sn

es − 1
= Γ(n+ 1) ζ(n+ 1) ⇒ I3 =

π4

15
,

and therefore

κ =
π2k

B
τ

45 c

(
k
B
T

hc

)3
.
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(8.5) Suppose the relaxation time is energy-dependent, with τ(ε) = τ0 e
−ε/ε0 . Compute the particle

current j and energy current jε flowing in response to a temperature gradient ∇T .

Solution :

Now we must compute

{
jα

jαε

}
=

∫
d3p

{
vα

ε vα

}
δf

= − 2n

3mk
B
T 2

∂T

∂xα
〈
τ(ε)

{ ε
ε2

} (
ε− 5

2kB
T
)〉

,

where τ(ε) = τ0 e
−ε/ε0 . We find

〈
e−ε/ε0 εα

〉
= 2√

π
(k

B
T )−3/2

∞∫

0

dε εα+
1
2 e−ε/kBT e−ε/ε0

= 2√
π
Γ
(
α+ 3

2

)
(k

B
T )α

(
ε0

ε0 + k
B
T

)α+ 3

2

.

Therefore,

〈
e−ε/ε0 ε

〉
= 3

2 kB
T

(
ε0

ε0 + k
B
T

)5/2

〈
e−ε/ε0 ε2

〉
= 15

4 (k
B
T )2

(
ε0

ε0 + k
B
T

)7/2

〈
e−ε/ε0 ε3

〉
= 105

8 (k
B
T )3

(
ε0

ε0 + k
B
T

)9/2

and

j =
5nτ0k

2
B
T

2m

ε
5/2
0

(ε0 + k
B
T )7/2

∇T

jε = −5nτ0k
2
B
T

4m

(
ε0

ε0 + k
B
T

)7/2(2ε0 − 5k
B
T

ε0 + k
B
T

)
∇T .

The previous results are obtained by setting ε0 = ∞ and τ0 = 1/
√
2nv̄σ. Note the strange result that κ

becomes negative for k
B
T > 2

5ε0.
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(8.6) Use the linearized Boltzmann equation to compute the bulk viscosity ζ of an ideal gas.

(a) Consider first the case of a monatomic ideal gas. Show that ζ = 0 within this approximation. Will
your result change if the scattering time is energy-dependent?

(b) Compute ζ for a diatomic ideal gas.

Solution :

According to the Lecture Notes, the solution to the linearized Boltzmann equation in the relaxation time
approximation is

δf = − τf0

k
B
T

{
mvαvβ

∂Vα
∂xβ

−
(
εtr + εrot

) k
B

cV
∇·V

}
.

We also have
Tr Π = nm 〈v2〉 = 2n 〈εtr〉 = 3p − 3ζ∇·V .

We then compute Tr Π:

Tr Π = 2n 〈εtr〉 = 3p− 3ζ∇·V

= 2n

∫
dΓ (f0 + δf) εtr

The f0 term yields a contribution 3nk
B
T = 3p in all cases, which agrees with the first term on the RHS

of the equation for Tr Π. Therefore

ζ∇·V = −2
3n

∫
dΓ δf εtr .

(a) For the monatomic gas, Γ = {px, py, pz}. We then have

ζ∇·V =
2nτ

3k
B
T

∫
d3p f0(p) ε

{
mvαvβ

∂Vα
∂xβ

− ε

cV /kB
∇·V

}

=
2nτ

3k
B
T

〈(
2
3 − k

B

cV

)
ε
〉
∇·V = 0 .

Here we have replaced mvαvβ → 1
3mv2 = 2

3εtr under the integral. If the scattering time is energy
dependent, then we put τ(ε) inside the energy integral when computing the average, but this does not
affect the final result: ζ = 0.

(b) Now we must include the rotational kinetic energy in the expression for δf , and we have cV = 5
2kB

.
Thus,

ζ∇·V =
2nτ

3k
B
T

∫
dΓ f0(Γ ) εtr

{
mvαvβ

∂Vα
∂xβ

−
(
εtr + εrot

) k
B

cV
∇·V

}

=
2nτ

3k
B
T

〈
2
3ε

2
tr −

k
B

cV

(
εtr + εrot

)
εtr

〉
∇·V ,
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and therefore

ζ =
2nτ

3k
B
T

〈
4
15 ε

2
tr − 2

5kB
T εtr

〉
= 4

15nτkB
T .
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(8.7) Consider a two-dimensional gas of particles with dispersion ε(k) = Jk2, where k is the wavevector.
The particles obey photon statistics, so µ = 0 and the equilibrium distribution is given by

f0(k) =
1

eε(k)/kBT − 1
.

(a) Writing f = f0 + δf , solve for δf(k) using the steady state Boltzmann equation in the relaxation
time approximation,

v · ∂f
0

∂r
= −δf

τ
.

Work to lowest order in ∇T . Remember that v = 1
~
∂ε
∂k is the velocity.

(b) Show that j = −λ∇T , and find an expression for λ. Represent any integrals you cannot evaluate
as dimensionless expressions.

(c) Show that jε = −κ∇T , and find an expression for κ. Represent any integrals you cannot evaluate
as dimensionless expressions.

Solution :

(a) We have

δf = −τ v · ∂f
0

∂r
= −τ v·∇T

∂f0

∂T

= −2τ

~

J2k2

kBT
2

eε(k)/kBT

(
eε(k)/kBT − 1

)2 k·∇T

(b) The particle current is

jµ =
2J

~

∫
d2k

(2π)2
kµ δf (k) = −λ ∂T

∂xµ

= −4τ

~2
J3

kBT
2

∂T

∂xν

∫
d2k

(2π)2
k2 kµ kν

eJk
2/k

B
T

(
eJk

2/k
B
T − 1

)2

We may now send kµkν → 1
2k

2δµν under the integral. We then read off

λ =
2τ

~2
J3

kBT
2

∫
d2k

(2π)2
k4

eJk
2/k

B
T

(
eJk

2/k
B
T − 1

)2

=
τk2

B
T

π~2

∞∫

0

ds
s2 es

(
es − 1

)2 =
ζ(2)

π

τk2
B
T

~2
.
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Here we have used ∞∫

0

ds
sα es

(
es − 1

)2 =

∞∫

0

ds
α sα−1

es − 1
= Γ(α+ 1) ζ(α) .

(c) The energy current is

jµε =
2J

~

∫
d2k

(2π)2
Jk2 kµ δf(k) = −κ ∂T

∂xµ
.

We therefore repeat the calculation from part (c), including an extra factor of Jk2 inside the integral.
Thus,

κ =
2τ

~2
J4

kBT
2

∫
d2k

(2π)2
k6

eJk
2/k

B
T

(
eJk

2/k
B
T − 1

)2

=
τk3

B
T 2

π~2

∞∫

0

ds
s3 es

(
es − 1

)2 =
6 ζ(3)

π

τk3
B
T 2

~2
.
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0.9 Stochastic Processes

(9.1) Due to quantum coherence effects in the backscattering from impurities, one-dimensional wires
don’t obey Ohm’s law (in the limit where the ‘inelastic mean free path’ is greater than the sample di-
mensions, which you may assume). Rather, let R(L) = R(L)/(h/e2) be the dimensionless resistance of a
quantum wire of length L, in units of h/e2 = 25.813 kΩ. Then the dimensionless resistance of a quantum
wire of length L+ δL is given by

R(L+ δL) = R(L) +R(δL) + 2R(L)R(δL) + 2 cosα
√

R(L)
[
1 +R(L)

]
R(δL)

[
1 +R(δL)

]
,

where α is a random phase uniformly distributed over the interval [0, 2π). Here,

R(δL) =
δL

2ℓ
,

is the dimensionless resistance of a small segment of wire, of length δL<∼ ℓ, where ℓ is the ‘elastic mean
free path’. (Using the Boltzmann equation, we would obtain ℓ = 2π~nτ/m.)

Show that the distribution function P (R, L) for resistances of a quantum wire obeys the equation

∂P

∂L
=

1

2ℓ

∂

∂R

{
R (1 +R)

∂P

∂R

}
.

Show that this equation* may be solved in the limits R ≪ 1 and R ≫ 1, with

P (R, z) = 1

z
e−R/z

for R ≪ 1, and

P (R, z) = (4πz)−1/2 1

R e−(lnR−z)2/4z

for R ≫ 1, where z = L/2ℓ is the dimensionless length of the wire. Compute 〈R〉 in the former case,
and 〈lnR〉 in the latter case.

Solution :

From the composition rule for series quantum resistances, we derive the phase averages

〈
δR
〉
=
(
1 + 2R(L)

)δL
2ℓ

〈
(δR)2

〉
=
(
1 + 2R(L)

)2(δL
2ℓ

)2

+ 2R(L)
(
1 +R(L)

) δL
2ℓ

(
1 +

δL

2ℓ

)

= 2R(L)
(
1 +R(L)

) δL
2ℓ

+O
(
(δL)2

)
,

whence we obtain the drift and diffusion terms

F1(R) =
2R+ 1

2ℓ
, F2(R) =

2R(1 +R)

2ℓ
.



0.9. STOCHASTIC PROCESSES 205

Note that 2F1(R) = dF2/dR, which allows us to write the Fokker-Planck equation as

∂P

∂L
=

∂

∂R

{R (1 +R)

2ℓ

∂P

∂R

}
.

Defining the dimensionless length z = L/2ℓ, we have

∂P

∂z
=

∂

∂R

{
R (1 +R)

∂P

∂R

}
.

In the limit R ≪ 1, this reduces to
∂P

∂z
= R ∂2P

∂R2
+
∂P

∂R ,

which is satisfied by P (R, z) = z−1 exp(−R/z). For this distribution one has 〈R〉 = z.

In the opposite limit, R ≫ 1, we have

∂P

∂z
=

∂

∂R

(
R2 ∂

∂R

)
=
∂2P

∂ν2
+
∂P

∂ν
,

where ν ≡ lnR. This is solved by the log-normal distribution,

P (R, z) = (4πz)−1/2 e−(ν+z)2/4z .

Note that

P (R, z) dR = P̃ (ν, z) dν =
1√
4πz

e−(ν−z)2/4z dν ,

One then obtains 〈ν〉 = 〈lnR〉 = z. Furthermore,

〈Rn〉 = 〈enν〉 = 1√
4πz

∞∫

−∞

dν e−(ν−z)2/4z enν = ek(k+1)z

Note then that 〈R〉 = exp(2z), so the mean resistance grows exponentially with length. However, note
also that 〈R2〉 = exp(6z), so

〈(∆R)2〉 = 〈R2〉 − 〈R〉2 = e6z − e4z ,

and so the standard deviation grows as
√

〈R2〉 ∼ exp(3z) which grows faster than 〈R〉. In other words,
the resistance R itself is not a self-averaging quantity, meaning the ratio of its standard deviation to its
mean doesn’t vanish in the thermodynamic limit – indeed it diverges. However, ν = lnR is a self-
averaging quantity, with 〈ν〉 = z and

√
〈ν2〉 =

√
2z .
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(9.2) Show that for time scales sufficiently greater than γ−1 that the solution x(t) to the Langevin equa-
tion ẍ+ γẋ = η(t) describes a Markov process. You will have to construct the matrix M defined in Eqn.
2.60 of the lecture notes. You should assume that the random force η(t) is distributed as a Gaussian,
with 〈η(s)〉 = 0 and 〈η(s) η(s′)〉 = Γ δ(s − s′).

Solution:

The probability distribution is

P (x1, t1 ; . . . ; xN , tN ) = det−1/2(2πM) exp

{
− 1

2

N∑

j,j′=1

M−1
jj′ xj xj′

}
,

where

M(t, t′) =

t∫

0

ds

t′∫

0

ds′ G(s− s′)K(t− s)K(t′ − s′) ,

and K(s) = (1− e−γs)/γ. Thus,

M(t, t′) =
Γ

γ2

t
min∫

0

ds (1− e−γ(t−s))(1− e−γ(t′−s))

=
Γ

γ2

{
tmin −

1

γ
+

1

γ

(
e−γt + e−γt′

)
− 1

2γ

(
e−γ|t−t′| + e−γ(t+t′)

)}
.

In the limit where t and t′ are both large compared to γ−1, we have M(t, t′) = 2Dmin(t, t′), where the
diffusions constant is D = Γ/2γ2. Thus,

M = 2D




t1 t2 t3 t4 t5 · · · tN
t2 t2 t3 t4 t5 · · · tN
t3 t3 t3 t4 t5 · · · tN
t4 t4 t4 t4 t5 · · · tN
t5 t5 t5 t5 t5 · · · tN
...

...
...

...
...

. . .
...

tN tN tN tN tN · · · tN




.

To find the determinant of M , subtract row 2 from row 1, then subtract row 3 from row 2, etc.The result
is

M̃ = 2D




t1 − t2 0 0 0 0 · · · 0
t2 − t3 t2 − t3 0 0 0 · · · 0
t3 − t4 t3 − t4 t3 − t4 0 0 · · · 0
t4 − t5 t4 − t5 t4 − t5 t4 − t5 0 · · · 0
t5 − t6 t5 − t6 t5 − t6 t5 − t6 t5 − t6 · · · 0
...

...
...

...
...

. . .
...

tN tN tN tN tN · · · tN




.
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Note that the last row is unchanged, since there is no row N + 1 to subtract from it Since M̃ is obtained
from M by consecutive row additions, we have

detM = det M̃ = (2D)N (t1 − t2)(t2 − t3) · · · (tN−1 − tN ) tN .

The inverse is

M−1 =
1

2D




1
t1−t2

− 1
t1−t2

0 · · ·

− 1
t1−t2

t1−t3
(t1−t2)(t2−t3)

− 1
t2−t3

0 · · ·

...
...

. . .

· · · 0 − 1
tn−1−tn

tn−1−tn+1

(tn−1−tn)(tn−tn+1)
− 1

tn−tn+1
0 · · ·

. . .

· · · 0 − 1
tN−1

−tN

tN−1

tN

1
tN−1

−tN




.

This yields the general result

N∑

j,j′=1

M−1
j,j′(t1, . . . , tN )xj xj′ =

N∑

j=1

(
1

tj−1 − tj
+

1

tj − tj+1

)
x2j −

2

tj − tj+1

xj xj+1 ,

where t0 ≡ ∞ and tN+1 ≡ 0. Now consider the conditional probability density

P (x1, t1 |x2, t2 ; . . . ; xN , tN ) =
P (x1, t1 ; . . . ; xN , tN )

P (x2, t2 ; . . . ; xN , tN )

=
det1/2 2πM(t2, . . . , tN )

det1/2 2πM(t1, . . . , tN )

exp
{
− 1

2

∑N
j,j′=1M

−1
jj′ (t1, . . . , tN )xj xj′

}

exp
{
− 1

2

∑N
k,k′=2M

−1
kk′(t2, . . . , tN )xk xk′

}

We have

N∑

j,j′=1

M−1
jj′ (t1, . . . , tN )xj xj′ =

(
1

t0 − t1
+

1

t1 − t2

)
x21 −

2

t1 − t2
x1 x2 +

(
1

t1 − t2
+

1

t2 − t3

)
x22 + . . .

N∑

k,k′=2

M−1
kk′(t2, . . . , tN )xk xk′ =

(
1

t0 − t2
+

1

t2 − t3

)
x22 + . . .

Subtracting, and evaluating the ratio to get the conditional probability density, we find

P (x1, t1 |x2, t2 ; . . . ; xN , tN ) =
1√

4πD(t1 − t2)
e−(x1−x2)

2/4D(t1−t2) ,
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which depends only on {x1, t1, x2, t2}, i.e. on the current and most recent data, and not on any data
before the time t2. Note the normalization:

∞∫

−∞

dx1 P (x1, t1 |x2, t2 ; . . . ; xN , tN ) = 1 .
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(9.3) Consider a discrete one-dimensional random walk where the probability to take a step of length 1
in either direction is 1

2p and the probability to take a step of length 2 in either direction is 1
2(1−p). Define

the generating function

P̂ (k, t) =
∞∑

n=−∞
Pn(t) e

−ikn ,

where Pn(t) is the probability to be at position n at time t. Solve for P̂ (k, t) and provide an expression
for Pn(t). Evaluate

∑
n n

2 Pn(t).

Solution:

We have the master equation

dPn

dt
= 1

2 (1− p)Pn+2 +
1
2pPn+1 +

1
2pPn−1 +

1
2(1− p)Pn−2 − Pn .

Upon Fourier transforming,

dP̂ (k, t)

dt
=
[
(1− p) cos(2k) + p cos(k)− 1

]
P̂ (k, t) ,

with the solution
P̂ (k, t) = e−λ(k) t P̂ (k, 0) ,

where
λ(k) = 1− p cos(k)− (1− p) cos(2k) .

One then has

Pn(t) =

π∫

−π

dk

2π
eikn P̂ (k, t) .

The average of n2 is given by

〈
n2
〉
t
= −∂

2P̂ (k, t)

∂k2

∣∣∣∣
k=0

=
[
λ′′(0) t− λ′(0)2 t2

]
=
(
4− 3p) t .

Note that P̂ (0, t) = 1 for all t by normalization.
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(9.4) Numerically simulate the one-dimensional Wiener and Cauchy processes discussed in §2.6.1 of the
lecture notes, and produce a figure similar to Fig. 2.3.

Solution:

Most computing languages come with a random number generating function which produces uniform
deviates on the interval x ∈ [0, 1]. Suppose we have a prescribed function y(x). If x is distributed
uniformly on [0, 1], how is y distributed? Clearly

∣∣p(y) dy
∣∣ =

∣∣p(x) dx
∣∣ ⇒ p(y) =

∣∣∣∣
dx

dy

∣∣∣∣ p(x) ,

where for the uniform distribution on the unit interval we have p(x) = Θ(x)Θ(1 − x) . For example, if
y = − lnx, then y ∈ [0,∞] and p(y) = e−y which is to say y is exponentially distributed. Now suppose
we want to specify p(y). We have

dx

dy
= p(y) ⇒ x = F (y) =

y∫

y0

dỹ p(ỹ) ,

where y0 is the minimum value that y takes. Therefore, y = F−1(x), where F−1 is the inverse function.

To generate normal (Gaussian) deviates with a distribution p(y) = (4πDε)−1/2 exp(−y2/4Dε) , we have

F (y) =
1√

4πDε

y∫

−∞

dỹ e−ỹ2/4Dε = 1
2 +

1
2 erf

(
y√
4Dε

)
.

We now have to invert the error function, which is slightly unpleasant.

A slicker approach is to use the Box-Muller method, which used a two-dimensional version of the above
transformation,

p(y1, y2) = p(x1, x2)

∣∣∣∣∣
∂(x1, x2)

∂(y1, y2)

∣∣∣∣∣ .

This has an obvious generalization to higher dimensions. The transformation factor is the Jacobian
determinant. Now let x1 and x2 each be uniformly distributed on [0, 1] , and let

x1 = exp

(
− y21 + y22

4Dε

)
y1 =

√
−4Dε ln x1 cos(2πx2)

x2 =
1

2π
tan−1(y2/y1) y2 =

√
−4Dε ln x1 sin(2πx2)

Then

∂x1
∂y1

= −y1 x1
2Dε

∂x2
∂y1

= − 1

2π

y2
y21 + y22

∂x1
∂y2

= −y2 x1
2Dε

∂x2
∂y2

=
1

2π

y1
y21 + y22
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Figure 37: (a) Wiener process sample path W (t). (b) Cauchy process sample path C(t). From K. Jacobs
and D. A. Steck, New J. Phys. 13, 013016 (2011).

and therefore the Jacobian determinant is

J =

∣∣∣∣∣
∂(x1, x2)

∂(y1, y2)

∣∣∣∣∣ =
1

4πDε
e−(y21+y22)/4Dε =

e−y21/4Dε

√
4πDε

· e
−y22/4Dε

√
4πDε

,

which says that y1 and y2 are each independently distributed according to the normal distribution,
which is p(y) = (4πDε)−1/2 exp(−y2/4Dε). Nifty!

For the Cauchy distribution, with

p(y) =
1

π

ε

y2 + ε2
,

we have

F (y) =
1

π

y∫

−∞

dỹ
ε

ỹ2 + ε2
= 1

2 + 1
π tan−1(y/ε) ,

and therefore
y = F−1(x) = ε tan

(
πx− π

2

)
.
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(9.5) A Markov chain is a probabilistic process which describes the transitions of discrete stochastic vari-
ables in time. Let Pi(t) be the probability that the system is in state i at time t. The time evolution
equation for the probabilities is

Pi(t+ 1) =
∑

j

Yij Pj(t) .

Thus, we can think of Yij = P (i , t + 1 | j , t) as the conditional probability that the system is in state i at
time t+1 given that it was in state j at time t. Y is called the transition matrix. It must satisfy

∑
i Yij = 1

so that the total probability
∑

i Pi(t) is conserved.

Suppose I have two bags of coins. Initially bag A contains two quarters and bag B contains five dimes.
Now I do an experiment. Every minute I exchange a random coin chosen from each of the bags. Thus
the number of coins in each bag does not fluctuate, but their values do fluctuate.

(a) Label all possible states of this system, consistent with the initial conditions. (I.e. there are always
two quarters and five dimes shared among the two bags.)

(b) Construct the transition matrix Yij .

(c) Show that the total probability is conserved is
∑

i Yij = 1, and verify this is the case for your
transition matrix Y . This establishes that (1, 1, . . . , 1) is a left eigenvector of Y corresponding to
eigenvalue λ = 1.

(d) Find the eigenvalues of Y .

(e) Show that as t → ∞, the probability Pi(t) converges to an equilibrium distribution P eq
i which is

given by the right eigenvector of i corresponding to eigenvalue λ = 1. Find P eq
i , and find the long

time averages for the value of the coins in each of the bags.

Solution :

(a) There are three possible states consistent with the initial conditions. In state | 1 〉, bag A contains
two quarters and bag B contains five dimes. In state | 2 〉, bag A contains a quarter and a dime while
bag B contains a quarter and five dimes. In state | 3 〉, bag A contains two dimes while bag B contains
three dimes and two quarters. We list these states in the table below, along with their degeneracies. The
degeneracy of a state is the number of configurations consistent with the state label. Thus, in state | 2 〉
the first coin in bag A could be a quarter and the second a dime, or the first could be a dime and the
second a quarter. For bag B, any of the five coins could be the quarter.

(b) To construct Yij , note that transitions out of state | 1 〉, i.e. the elements Yi1, are particularly simple.
With probability 1, state | 1 〉 always evolves to state | 2 〉. Thus, Y21 = 1 and Y11 = Y31 = 0. Now
consider transitions out of state | 2 〉. To get to state | 1 〉, we need to choose the D from bag A (probability
1
2 ) and the Q from bag B (probability 1

5 ). Thus, Y12 = 1
2 × 1

5 = 1
10 . For transitions back to state | 2 〉, we

could choose the Q from bag A (probability 1
2 ) if we also chose the Q from bag B (probability 1

5 ). Or
we could choose the D from bag A (probability 1

2 ) and one of the D’s from bag B (probability 4
5 ). Thus,
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Y22 =
1
2 × 1

5 +
1
2 × 4

5 = 1
2 . Reasoning thusly, one obtains the transition matrix,

Y =




0 1
10 0

1 1
2

2
5

0 2
5

3
5




.

Note that
∑

i Yij = 1.

| j 〉 bag A bag B gA

j gB

j gTOT

j

| 1 〉 QQ DDDDD 1 1 1

| 2 〉 QD DDDDQ 2 5 10

| 3 〉 DD DDDQQ 1 10 10

Table 12: States and their degeneracies.

(c) Our explicit form for Y confirms the sum rule
∑

i Yij = 1 for all j. Thus, ~L1 = (1 1 1) is a left
eigenvector of Y with eigenvalue λ = 1.

(d) To find the other eigenvalues, we compute the characteristic polynomial of Y and find, easily,

P (λ) = det(λ I− Y ) = λ3 − 11
10 λ

2 + 1
25 λ+ 3

50 .

This is a cubic, however we already know a root, i.e. λ = 1, and we can explicitly verify P (λ = 1) = 0.
Thus, we can divide P (λ) by the monomial λ − 1 to get a quadratic function, which we can factor. One
finds after a small bit of work,

P (λ)

λ− 1
= λ2 − 3

10 λ− 3
50 =

(
λ− 3

10

)(
λ+ 1

5

)
.

Thus, the eigenspectrum of Y is λ1 = 1, λ2 =
3
10 , and λ3 = −1

5 .

(e) We can decompose Y into its eigenvalues and eigenvectors, like we did in problem (1). Write

Yij =

3∑

α=1

λαR
α
i L

α
j .

Now let us start with initial conditions Pi(0) for the three configurations. We can always decompose
this vector in the right eigenbasis for Y , viz.

Pi(t) =

3∑

α=1

Cα(t)R
α
i ,

The initial conditions are Cα(0) =
∑

i L
α
i Pi(0). But now using our eigendecomposition of Y , we find

that the equations for the discrete time evolution for each of the Cα decouple:

Cα(t+ 1) = λαCα(t) .
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Clearly as t → ∞, the contributions from α = 2 and α = 3 get smaller and smaller, since Cα(t) =
λtα Cα(0), and both λ2 and λ3 are smaller than unity in magnitude. Thus, as t → ∞ we have C1(t) →
C1(0), and C2,3(t) → 0. Note C1(0) =

∑
i L

1
i Pi(0) =

∑
i Pi(0) = 1, since ~L1 = (1 1 1). Thus, we obtain

Pi(t → ∞) → R1
i , the components of the eigenvector ~R1. It is not too hard to explicitly compute the

eigenvectors:

~L1 =
(
1 1 1

)
~L2 =

(
10 3 −4

)
~L3 =

(
10 −2 1

)

~R1 = 1
21




1
10
10


 ~R2 = 1

35




1
3
−4


 ~R3 = 1

15




1
−2
1


 .

Thus, the equilibrium distribution P eq
i = limt→∞ Pi(t) satisfies detailed balance:

P eq
j =

gTOT

j∑
l g

TOT

l

.

Working out the average coin value in bags A and B under equilibrium conditions, one finds A = 200
7

and B = 500
7 (cents), and B/A is simply the ratio of the number of coins in bag B to the number in bag

A. Note A+B = 100 cents, as the total coin value is conserved.


	Contents
	List of Tables
	List of Figures
	Probability
	Thermodynamics
	Approach to Equilibrium
	Statistical Ensembles
	Quantum Statistics
	Interacting Classical Systems
	Mean Field Theory of Phase Transitions
	Boltzmann Equation
	Stochastic Processes


